期刊文献+

基于指针标注的金融事件联合抽取模型

A joint extraction model for financial events based on pointer annotation
下载PDF
导出
摘要 针对金融领域事件抽取存在的元素重叠、语句歧义以及级联错误传播问题,提出一种基于指针标注的金融事件联合抽取模型,首先利用PERT预训练模型提取语义信息;再融入事件类型信息进行语义增强,SATT-BILSTM模型加强特征提取,指针标注解决元素重叠;最后为了增强模型的鲁棒性和泛化性,在模型训练的过程中加入了对抗训练。文中提出的模型在FewFC测试集上进行对比实验,结果表明,抽取效果更佳。 To address the problems of element overlap,statement ambiguity and cascading error propagation in event extraction in the financial domain,a joint extraction model of financial events based on pointer annotation is proposed,which first extracts semantic information by using PERT pre-training model,then incorporates event type information for semantic enhancement,SATT-BILSTM model to enhance feature extraction,pointer annotation to solve element overlap,and finally,to enhance the model's finally,in order to enhance the robustness and generalization of the model,adversarial training is added in the process of model training.The model proposed in this paper is tested on the FewFC test set for comparison,and the experimental results show that the ex-traction effect is better.
作者 冯珊珊 赵辉 曹亚亚 FENG Shanshan;ZHAO Hui;CAO Yaya(School of Computer Science&Engineering,Changchun University of Technology,Changchun 130102,China)
出处 《长春工业大学学报》 2023年第5期441-448,共8页 Journal of Changchun University of Technology
基金 吉林省教育厅“十三五”科学技术项目(JJKH20200677KJ)。
关键词 联合学习 元素重叠 语句歧义 错误传播 指针标注 对抗训练 joint learning element overlap statement ambiguity error propagation pointer labeling adversarial training
  • 相关文献

参考文献11

二级参考文献51

共引文献103

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部