期刊文献+

基于机器学习方法的探空数据质量控制研究 被引量:1

Research on Quality Control of Sounding Data Based on Machine Learning Method
下载PDF
导出
摘要 【目的】建立一套基于机器学习方法的探空数据的自动化质量控制检测算法模型,为提高大气探空数据质量控制的效率及质量提供参考。【方法】本模型使用大气探空观测原始数据,以三西格玛准则完成初步质控,基于三西格玛准则检测结果标记生成机器学习数据集,应用XGBoost机器学习算法完成最终质控模型的构建。【结果】实现了对大气探空观测数据温度、气压、湿度、仰角、方位角、斜距素数的异常数据检测,模型异常数据检测精确率96.7%,识别率比人工检测提高了43.5%。【结论】模型对要素异常值检测具有较好的效果,较人工识别性能有明显提升。 [Purposes]In order to improve the efficiency and quality of atmospheric sounding data quality control,this study established an automated quality control detection algorithm model for sounding data based on machine learning methods.[Methods]This model uses atmospheric sounding observation raw data,completes preliminary quality control using the Three Sigma criterion,generates machine learning datasets based on the Three Sigma criterion detection results,and applies XGBoost machine learning al-gorithm to complete the construction of the final quality control model.[Findings]The model achieved the detection of abnormal data in atmospheric sounding observation data such as temperature,pressure,humidity,elevation,azimuth,and diagonal prime.The test results showed that the accuracy of abnormal data detection in the model was 96.7%,and the recognition rate was improved by 43.5%compared to manual detection.[Conclusions]The model has a good effect on the detection of element outlier,which is significantly improved compared with the performance of manual identification.
作者 刘辉 LIU Hui(Inner Mongolia Autonomous Region Data Center,Hohhot 010051,China)
出处 《河南科技》 2023年第21期95-98,共4页 Henan Science and Technology
基金 内蒙古自治区科技计划项目“基于机器学习的沙尘暴监测预警及时研究与应用”(2022YFSH0128)。
关键词 机器学习 高空数据质控 XGBoost machine learning high-altitude data quality control XGBoost
  • 相关文献

参考文献3

二级参考文献35

共引文献30

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部