摘要
变压器油中溶解气体分析(DGA)是识别变压器的故障类型的一项重要技术,模糊聚类是一种有效的分析手段。但传统模糊聚类算法存在对随机初始化的聚类中心敏感、隶属度函数的有效度量范围较小使其容易陷入局部极值点的问题,因而实际分类效果不佳。针对传统FCM的不足,首先采用Canopy算法对DGA数据进行粗聚类,将其结果作为后续FCM聚类的初始聚类中心和最佳聚类数,降低了人为和随机初始化参数的主观性;然后通过引入负指数函数形式的相似度指标重构了FCM隶属度的迭代函数,降低了算法陷入局部极值点的可能性;最后通过对故障气体数据进行实例分析,验证了改进后的算法在识别变压器故障类别上的有效性和实用性。
Dissolved gas analysis(DGA)in transformer oil is an important technology to identify transformer fault types,and fuzzy clustering is an effective analysis method.However,the traditional fuzzy clustering algorithm is sensitive to the randomly initialized cluster center and the effective measurement range of membership function is small,which makes it easy to fall into local extremum points,so the actual classification effect is not good.To address the shortcomings of the traditional FCM.Canopy algorithm was first used to conduct rough clustering of DGA data,and the results were used as the initial cluster center and optimal cluster number of subsequent FCM clustering,which reduced the subjectivity of artificial and random initialization parameters.Then,the iterative function of FCM membership was reconstructed by introducing the similarity index in the form of negative exponential function,which reduced the possibility of the algorithm falling into local extremum points.Finally,the effectiveness and practicability of the improved algorithm in transformer fault classification are verified by analyzing the fault gas data.
作者
代子阔
赵庆源
李飞
翟兴
赵帅科
谭玉华
DAI Zikuo;ZHAO Qingyuan;LI Fei;ZHAI Xing;ZHAO Shuaike;TAN Yuhua(State Grid Liaoning Electric Power Company Limited,Shenyang 110000,China;State Grid Benxi Power Supply Company,Benxi 117020,China;School of Mechanical Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China)
出处
《哈尔滨理工大学学报》
CAS
北大核心
2023年第4期118-126,共9页
Journal of Harbin University of Science and Technology
基金
国家自然科学基金(51777126)
国网公司科技项目(2021YF-19).