期刊文献+

广义von Neumann常数的几何性质

Geometric Properties of Generalized Von Neumann Constant
下载PDF
导出
摘要 空间几何常数是空间几何性质的一种量化。为了进一步应用几何常数研究Banach空间的几何结构,通过引入一个新的广义von Neumann常数,给出了广义von Neumann常数的连续性、对称性、有界性以及广义von Neumann常数的等价形式,并用其判别了Banach空间的一致非方性,通过两个例子给出几个特殊Banach空间的广义Von Neumann常数的计算式或估值。 Spatial geometric constant is a quantization of the properties of spatial geometry.In order to further apply the geometric constant to study the geometry of the Banach space,a new generalized von Neumann constant is introduced.We give the continuity,symmetry,boundedness and the equivalent form of the generalized von Neumann constant,and judge the consistent non-square of the Banach space,and give the calculation formula or valuation of several special Banach space with two examples.
作者 赵亮 赵平安 ZHAO Liang;ZHAO Pingan(School of Science,Harbin University of Science and Technology,Harbin 150080,China)
出处 《哈尔滨理工大学学报》 CAS 北大核心 2023年第4期138-144,共7页 Journal of Harbin University of Science and Technology
基金 黑龙江省自然科学基金(A2016004).
关键词 广义von Neumann常数 连续性 对称性 有界性 一致非方 generalized von neumann constant continuity symmetry boundedness uniformly non-square
  • 相关文献

参考文献2

二级参考文献19

  • 1Gao J ,Lau K S. On the geometry of spheres in normed linear spaces[J]. J Austral Math Soc, 1990,48:101-112.
  • 2He C, Cui Y. Some properties concerning Milman's moduli[J]. J Math Anal Appl,2007,329:1260-1272.
  • 3Saejung S. On James and Von Neumann-Jordan constants and sufficient condition for the fixed point property[J].J Math Anal Appl, 2006,323 : 1018- 1024.
  • 4Khamsi M A. Uniform smoothness implies super-normal structure property[J].Nonlinear Anal, 1992 19:1063-1069.
  • 5Dhompongsa S,Piraisangjung P, Saejung S. Generalized Jordan-Von Neumann constants and uniform normal structure[J].Bull Austral Math Soc,2003,67:225-240.
  • 6崔云安.Banach空间几何理论及应用[M].科学出版社,2001.
  • 7J. A. CLARKSON. Uniformly Convex Spaces[J]. Trans. Amer. Math. Soc, 1936, 40:396 -414.
  • 8M. BARONTI, P. L Papini. Convexity, Smoothness and Modul[ J ]. Nonlinear Analysis, 2009,70:2457 - 2465.
  • 9J. DANES. On Local and Global Moduli of Convexity [J ]. Corn-men. Math. Univ. Carolinae, 1976, 67 : 413 -420.
  • 10M. A. KHAMSI, W.A. KIRK. An Introduction to Metric Spaces and Fixed Point Theory[J]. John Wiley & Sons Inc, 2001 : 138 - 139.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部