期刊文献+

面向非独立同分布数据的联邦学习研究进展 被引量:3

Advances in Federated Learning for Non-independent Identically Distributed Data
下载PDF
导出
摘要 在联邦学习中,因数据只需要在终端设备上进行训练而不需要上传到服务器端,从而有效的保证了数据的隐私性和安全性.目前关于联邦学习各方面的研究虽然取得了很大的进展,但是联邦学习中的非独立同分布数据问题仍然是一个难以攻克的难题.本文对联邦学习中非独立同分布数据方面的研究进行了大量的调研,发现现有的研究主要涉及以下几个方面:性能优化、算法优化、模型优化、通信成本、隐私保护和个性化联邦学习等.为了归纳整理联邦学习中关于非独立同分布数据的相关研究,本文从以上各个方面详细介绍了现阶段联邦学习中有关非独立同分布数据的研究方案;最后分析了联邦学习中非独立同分布数据未来的研究方向,为今后联邦学习的研究指明方向. In federated learning,data only needs to be trained on the terminal device without being uploaded to the server,thus effectively ensuring the privacy and security of data.Although great progress has been made in all aspects of federated learning,the problem of non-Independent Identically Distributed data in federated learning is still a difficult problem to overcome.In this paper,a lot of research on non-Independent Identically Distributed data in federated learning is conducted,and it is found that the existing research mainly involves the following aspects:performance optimization,algorithm optimization,model optimization,communication cost,privacy protection and personalized federated learning.In order to summarize the relevant researches on non-Independent Identically Distributed data in federal learning,this paper introduces in detail the current research programs on non-Independent Identically Distributed data in federal learning from the above aspects.Finally,the future research direction of non-Independent Identically Distributed data in federal learning is analyzed to point out the future research direction of federal learning.
作者 郭桂娟 田晖 皮慧娟 贾维嘉 彭绍亮 王田 GUO Gui-juan;TIAN Hui;PI Hui-juan;JIA Wei-jia;PENG Shao-liang;WANG Tian(College of Computer Science and Technology,Huaqiao University,Xiamen 361021,China;Institute of Artificial Intelligence and Future Networks,Beijing Normal University,Zhuhai 519000,China;Guangdong Key Lab of AI and Multi-Modal Data Processing,BNU-HKBU United International College,Zhuhai 519000,China;College of Information Science and Engineering,Hunan University,Changsha 410000,China;Changsha National Supercomputing Center,Hunan University,Changsha 410000,China)
出处 《小型微型计算机系统》 CSCD 北大核心 2023年第11期2442-2449,共8页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(62172046)资助 广东省教育厅重点专项项目(2021ZDZX1063)资助 广东省教育厅人工智能与多模态重点实验室项目(2020KSYS007)资助 珠海市产学研项目(ZH22017001210133PWC)资助 UIC科研启动经费项目(R72021202)资助。
关键词 联邦学习 非独立同分布数据 研究方案 研究进展 federated learning non-independent identically distributed data research approach research progress
  • 相关文献

参考文献8

二级参考文献39

共引文献190

同被引文献14

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部