期刊文献+

基于高斯模糊和BP神经网络的汽车液压转向系统故障诊断 被引量:3

Fault Diagnosis of Automotive Hydraulic Steering System Based on Gaussian Fuzzy and BP Neural Network
下载PDF
导出
摘要 提出了一种结合高斯模糊化和BP神经网络的汽车液压转向系统故障诊断方法。通过采集压力、温度、噪声、流量和泄漏量等信号,并对其进行高斯模糊化处理,将其映射为一组多元模糊集合,用于描述液压转向系统的状态。同时,使用BP神经网络对故障进行分类和回归预测,并通过训练集和测试集验证了模型的准确性和泛化能力。与未高斯模糊化的对照实验相比,高斯模糊化处理的方法表现出了明显的优越性,能够提高预测准确性、降低训练时间和计算量,并减小过拟合的可能性。因此,该方法可以为汽车液压转向系统的故障诊断提供一种有效的解决方案。 A method for diagnosing faults in the hydraulic steering system of automobiles is proposed,which combines Gaussian fuzzification and BP neural network.Signals such as pressure,temperature,noise,flow,and leakage are collected and processed by Gaussian fuzzification to map them into a set of multivariate fuzzy sets for describing the state of the hydraulic steering system.Meanwhile,the BP neural network is used to classify and regress the faults,and the accuracy and generalization ability of the model are verified through training and testing sets.Compared with the control experiment without Gaussian fuzzification,the method of Gaussian fuzzification processing shows obvious superiority,which can improve prediction accuracy,reduce training time and computational complexity,and decrease the possibility of overftting.Therefore,the method can provide an effective solution for fault diagnosis in the hydraulic steering system of automobiles.
作者 郭媛 汪胜 李世超 曾良才 CUO Yuan;WANG Sheng;LI Shi-chao;ZENG Liang-cai(Key Laboratory of Metallurgical Equipment and Its Control,Ministry of Education,Wuhan,Hubei 430081;Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering,Wuhan,Hubei 430081;Precision Manufacturing Research Institute,Wuhan University of Science and Technology,Wuhan,Hubei 430081)
出处 《液压与气动》 北大核心 2023年第10期70-77,共8页 Chinese Hydraulics & Pneumatics
基金 国家自然科学基金(51975425)。
关键词 BP神经网络 高斯模糊化 液压系统 故障诊断 BP neural network gaussian blurring hydraulic system fault diagnosis
  • 相关文献

参考文献9

二级参考文献64

  • 1杨扬,龚国芳,胡国良,杨华勇.模拟盾构机推进液压系统泵站集成设计[J].机床与液压,2006,34(4):118-120. 被引量:11
  • 2周汝胜,焦宗夏,王少萍.液压系统故障诊断技术的研究现状与发展趋势[J].机械工程学报,2006,42(9):6-14. 被引量:149
  • 3郭堃,陈欠根,谭祖湘,李渊博.神经网络在复杂液压系统故障诊断中的应用[J].机床与液压,2006,34(10):197-199. 被引量:10
  • 4Chine W, Mellit A, Lughi V, et al. A Novel Fault Diagno- sis Technique for Photovoltaic Systems Based on Artificial Neural Networks [ J ]. Renewable Energy, 2016, (90) : 501 -512.
  • 5Hakim S J S, Abdul Razak H, Ravanfar S A. Fault Diagno- sis on Beam-like Structures from Modal Parameters Using Artificial Neural Networks [ J ]. Measurement, 2015, (76) : 45 -61.
  • 6Shao M, Zhu X J, Cao H F, et al. An Artificial Neural Net- work Ensemble Method for Fault Diagnosis of Proton Ex- change Membrane Fuel Cell System [ J ]. Energy, 2014, (67) :268 - 275.
  • 7CHEN Xiaoyue, ZHOU Jianzhong, XIAO Jian, et al. Fault Diagnosis Based on Dependent Feature Vector and Probabili- ty Neural Network for Rolling Element Bearings [ J ]. Ap- plied Mathematics and Computation, 2014, ( 247 ) : 835 - 847.
  • 8Fernando H, Surgenor B. An Unsupervised Artificial Neural Network Versus a Rule-based Approach for Fault Detection and Identification in an Automated Assembly Machine [ J ]. Robotics and Computer-Integrated Manufacturing, 2015, (11) :006.
  • 9HORNIK K, STINCHCOMBE M, WHITE H. Multilayer Feed-forward Networks are Universal Approximators [ J ]. Neural Networks, 1989,2(5 ) :359 - 366.
  • 10杜炬辉,彭登志,尹镪.机械液压传动系统泄漏原因分析及控制措施[J].科协论坛(下半月),2010(9):33-33. 被引量:5

共引文献113

同被引文献33

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部