摘要
提出了一种结合高斯模糊化和BP神经网络的汽车液压转向系统故障诊断方法。通过采集压力、温度、噪声、流量和泄漏量等信号,并对其进行高斯模糊化处理,将其映射为一组多元模糊集合,用于描述液压转向系统的状态。同时,使用BP神经网络对故障进行分类和回归预测,并通过训练集和测试集验证了模型的准确性和泛化能力。与未高斯模糊化的对照实验相比,高斯模糊化处理的方法表现出了明显的优越性,能够提高预测准确性、降低训练时间和计算量,并减小过拟合的可能性。因此,该方法可以为汽车液压转向系统的故障诊断提供一种有效的解决方案。
A method for diagnosing faults in the hydraulic steering system of automobiles is proposed,which combines Gaussian fuzzification and BP neural network.Signals such as pressure,temperature,noise,flow,and leakage are collected and processed by Gaussian fuzzification to map them into a set of multivariate fuzzy sets for describing the state of the hydraulic steering system.Meanwhile,the BP neural network is used to classify and regress the faults,and the accuracy and generalization ability of the model are verified through training and testing sets.Compared with the control experiment without Gaussian fuzzification,the method of Gaussian fuzzification processing shows obvious superiority,which can improve prediction accuracy,reduce training time and computational complexity,and decrease the possibility of overftting.Therefore,the method can provide an effective solution for fault diagnosis in the hydraulic steering system of automobiles.
作者
郭媛
汪胜
李世超
曾良才
CUO Yuan;WANG Sheng;LI Shi-chao;ZENG Liang-cai(Key Laboratory of Metallurgical Equipment and Its Control,Ministry of Education,Wuhan,Hubei 430081;Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering,Wuhan,Hubei 430081;Precision Manufacturing Research Institute,Wuhan University of Science and Technology,Wuhan,Hubei 430081)
出处
《液压与气动》
北大核心
2023年第10期70-77,共8页
Chinese Hydraulics & Pneumatics
基金
国家自然科学基金(51975425)。
关键词
BP神经网络
高斯模糊化
液压系统
故障诊断
BP neural network
gaussian blurring
hydraulic system
fault diagnosis