摘要
虹膜识别作为最有潜力的生物特征识别技术之一,已得到广泛应用。然而,现有的虹膜识别系统在图像采集过程中易受外界因素干扰,存在采集的虹膜图像分辨率不足、易模糊等问题。为解决以上问题,提出了一种先验引导的虹膜图像盲修复算法,利用生成对抗网络和虹膜先验知识对低分辨率、运动模糊、离焦模糊等降质因素混合的未知退化虹膜图像进行盲修复。修复网络包括退化去除子网络、先验估计子网络和先验融合子网络,其中先验估计子网络对输入的风格信息进行分布建模,并将其作为先验知识来指导生成网络;先验融合子网络利用注意力融合机制来整合多层级的风格特征,提高了信息的利用率。实验结果表明,所提方法在定性和定量指标上都优于其他算法,实现了退化虹膜的盲修复,提高了虹膜识别的鲁棒性。
As one of the most potential biometric technologies,iris recognition has been widely used in various industries.How-ever,the existing iris recognition system is easily disturbed by external factors during the image acquisition process,and the acquired iris images have inevitable problems of insufficient resolution and easy blurring.To address these challenges,a prior-guided blind iris image restoration method is proposed,which utilizes the generative adversarial network and iris priors to recover unknown degraded iris images mixed with degradation factors such as low resolution,motion blur,and out-of-focus blur.The network includes a degradation removal sub-network,a prior estimation sub-network,and a prior fusion sub-network.The prior estimation sub-network models the distribution of the style information of the input as prior knowledge to guide the generative network.Besides,the prior fusion sub-network uses an attentive fusion mechanism to integrate multi-level style features,which improves the utilization of information.Experimental results show that the proposed method outperforms other methods in both qualitative and quantitative indexes,achieves blind recovery of degraded irises,and improves the robustness of iris recognition.
作者
王甲
项刘宇
黄昱博
夏玉峰
田青
何召锋
WANG Jia;XIANG Liuyu;HUANG Yubo;XIA Yufeng;TIAN Qing;HE Zhaofeng(School of Artificial Intelligence,Beijing University of Posts and Telecommunications,Beijing 100876,China;School of Integrated Circuits,Beijing University of Posts and Telecommunications,Beijing 100876,China;School of Modern Post(School of Automation),Beijing University of Posts and Telecommunications,Beijing 100876,China;School of Information,North China University of Technology,Beijing 100144,China)
出处
《计算机科学》
CSCD
北大核心
2023年第12期148-155,共8页
Computer Science
基金
国家自然科学基金(62176025,62106015,U21B2045)。
关键词
虹膜修复
虹膜识别
虹膜分割
风格信息
注意力融合
Iris restoration
Iris recognition
Iris segmentation
Style information
Attentive fusion