摘要
脑电信号情绪识别的难点之一在于如何优选特征,为此,本文提出一种基于mRMR特征优选方法的脑电信号情绪识别。首先,对数据集中经预处理后的脑电信号提取时域、频域、非线性、Hjorth特征等多种特征,构建特征向量;其次,采用mRMR优选特征向量数量,获得最优特征向量组;最后,采用支持向量机算法(SVM)对优选的特征进行分类,获得效价和唤醒度的二分类结果。实验结果表明,基于mRMR特征选择方法的脑电信号情绪识别方法在效价和唤醒度两个方面的识别准确率为76.82%和77.6%,具有良好的识别效果。
One of the difficulties in emotion recognition of EEG signals is how to optimize features.Therefore,this paper proposes a method for emotion recognition of EEG signals based on mRMR feature optimization.Firstly,extract various features such as time-domain,frequency-domain,nonlinear,and Hjordh features from the preprocessed EEG signals in the dataset,and construct feature vectors.Secondly,mRMR is used to optimize the number of feature vectors and obtain the optimal set of feature vectors.Finally,support vector machine(SVM)algorithm is used to classify the selected features and obtain binary classification results of potency and arousal.The experimental results show that the emotion recognition method based on mRMR feature selection for EEG signals has recognition accuracy of 76.82% and 77.6% in terms of potency and arousal,and has good recognition performance.
作者
胡梓煊
张光旭
张圣杰
张晓丹
HU Zixuan;ZHANG Guangxu;ZHANG Shengjie;ZHANG Xiaodan(School of Electronics and Information,Xi'an Polytechnic University,Xi'an,Shaanxi 710600,China)
出处
《自动化应用》
2023年第21期8-11,共4页
Automation Application
基金
陕西省科技厅自然科学面上项目(2022JM-146)。
关键词
情绪识别
脑电信号
特征提取
支持向量机算法
emotion recognition
EEG signals
feature extraction
support vector machine