摘要
电催化硝酸根还原反应(NO_(3)^(-)RR)使用电子作为绿色还原剂,为去除和利用水中硝酸盐提供了一种有前景的技术.其中,铜基材料在碱性溶液(如1 mol L^(-1)KOH)中显示出较高的NO_(3)^(-)RR催化活性,但在中性条件下催化剂的性能不高.目前,在中性体系中同时实现高活性、高选择性和高法拉第效率的氨合成是一个巨大的挑战.以往研究主要通过掺杂、合金化、调节晶面和引入缺陷等办法来提高NO_(3)^(-)RR的性能.此外,构筑异质结构界面可以调节催化剂的几何结构、电荷分布和配位环境,也是优化催化性能的一种有效策略.通过异质结构界面效应可以提供更多的催化活性位点,打破单组分催化剂的活性线性关系,进而提升NO_(3)^(-)RR性能.已有的研究中多采用直接化学合成法构筑铜基异质结催化剂,但在NO_(3)^(-)RR条件下原位制备异质结催化剂的文献报道较少,且已有的少数在NO_(3)^(-)RR条件下原位制备铜基异质结构的报道,由于界面性质不利、活性位点密度低,其催化NO_(3)^(-)RR的性能难以令人满意.因此,有必要采取有效的策略来原位构筑具有可调界面结构和丰富活性位点的铜基异质结构.本文提出了一种原位动态重构策略,通过构筑具有丰富界面活性位点的Cu/Ce(OH)_(x)催化剂以提高NO_(3)^(-)RR性能.在KCl溶液中将Ce(OH)_(x)电沉积到泡沫铜上,生成Cu_2Cl(OH)_(3)并与Ce(OH)_(x)一起沉积形成Cu_2Cl(OH)_(3)/Ce(OH)_(x)异质结构.在NO_(3)^(-)RR过程中,Cu_2Cl(OH)_3/Ce(OH)_(x)经历动态重构,原位形成了Cu/Ce(OH)_(x)催化剂.原位活化后,NO_(3)^(-)R性能显著增强,随后达到稳定状态.催化剂展现出较好的催化性能,NO_(3)^(-)转化率为100.0%,NH_(3)选择性为97.8%,NH_(3)法拉第效率为99.2%,并表现出长期稳定性,是中性介质中较先进的催化剂之一.采用X射线衍射(XRD)、扫描电镜(SEM)、高分辨透射电镜(HRTEM)、选区电子衍射(SAED)、X射线光电子能谱(XPS)及原位拉曼光谱表征了Cu_(2)Cl(OH)_(3)/Ce(OH)_(x)预催化剂的原位重构过程.XRD结果表明,Cu_(2)Cl(OH)_(3)/Ce(OH)_(x)预催化剂在第一次NO_(3)^(-)RR测试后还原形成了Cu/Ce(OH)_(x).SEM结果表明,Cu_(2)Cl(OH)_(3)颗粒在第一次NO_(3)^(-)RR循环后开始形成裂纹,第二次NO_(3)^(-)RR后碎裂成几十至100 nm的颗粒,其上存在大量Ce(OH)_(x)纳米粒子.HRTEM和SAED结果证实了上述结构变化.XPS结果表明,铜在原位重构过程中逐渐从高价态还原到低价态.原位拉曼光谱进一步确认Cu_(2)Cl(OH)_(3)还原为Cu_(2)O再到Cu的动态转变过程.原位和非原位表征结果一致表明,Cu_(2)Cl(OH)_(3)/Ce(OH)_(x)异质结构经历了动态还原和纳米化过程,原位构筑了具有丰富活性位点的Cu/Ce(OH)_(x)界面.采用在线微分电化学质谱(DEMS)和密度泛函理论(DFT)研究了NO_(3)^(-)RR性能增强机理.DEMS结果表明,Cu/Ce(OH)_(x)上存在NO,HNO/NOH和NH_(2)OH中间体.DFT结果表明,Cu/Ce(OH)_(x)界面位点具有以下作用:(1)促进硝酸根的吸附和活化;(2)降低了电位限制步骤(NO*→HNO*)的反应能垒;(3)通过增强氢吸附强度,抑制了析氢副反应的发生.此外,原位纳米化形成的丰富界面活性位点也促进了NO_(3)^(-)RR活性的提升.综上,本文提出了一种原位构筑动态界面活性位点的策略,从而增强电催化性能,以实现高价值化学品的可持续合成.未来可改变前驱体种类将该方法拓展至其他催化剂体系,探索其在多种电催化反应中的应用.
Electrocatalytic nitrate reduction(NO_(3)^(-)RR)offers a promising technique for the removal and utilization of nitrate in water.However,the performance of current catalysts is still limited mainly due to the unfavorable interface that largely determines the reaction efficiency and selectivity.Here we present an in situ dynamic reconstruction strategy to enhance the NO_(3)^(-)RR by constructing Cu/Ce(OH)_(x) catalyst with abundant interfacial active sites.The Cu/Ce(OH)_(x) catalyst was in situ formed through dynamic reconstruction of Cu_(2)Cl(OH)_(3)/Ce(OH)_(x) heterostructure during electrochemical NO_(3)^(‒)RR process.The catalyst exhibits high performance with NO_(3)^(-) conversion of 100.0%,NH_(3) selectivity of 97.8%,NH_(3) Faradaic efficiency of 99.2%and long stability,which is among the state-of-the-art catalysts in neutral media.Both experimental and theoretical results demonstrate that the Cu and Ce sites at the interface can operate cooperatively to promote the adsorption and activation of NO_(3)^(-),and lower the formation energy of key intermediate*HNO.Meanwhile,the hydrogen evolution reaction is also greatly suppressed due to the high H*binding strength at the interface.The strategy can be extended to other catalytic systems and opens a new avenue for the design of efficient electrocatalysts.
作者
刘勇
赵晓丽
隆昶
王晓艳
邓邦为
李康璐
孙艳娟
董帆
Yong Liu;Xiaoli Zhao;Chang Long;Xiaoyan Wang;Bangwei Deng;Kanglu Li;Yanjuan Sun;Fan Dong(Yangtze Delta Region Institute(Huzhou),University of Electronic Science and Technology of China,Huzhou 313000,Zhejiang,China;College of Optoelectronic Engineering,Chengdu University of Information Technology,Chengdu 610225,Sichuan,China;chool of Resources and Environment,University of Electronic Science and Technology of China,Chengdu 611731,Sichuan,China;Molecular Electrochemistry Laboratory,Institute of Fundamental and Frontier Sciences,University of Electronic Science and Technology of China,Chengdu 610054,Sichuan,China;Research Center for Carbon‐Neutral Environmental&Energy Technology,Institute of Fundamental and Frontier Sciences,University of Electronic,Science and Technology of China,Chengdu 611731,Sichuan,China;College of Architecture and Environment,Sichuan University,Chengdu 610065,Sichuan,China)
基金
国家重点研发计划(2020YFA0710000)
国家自然科学基金(22225606,22176029)
四川省自然科学杰出学者基金(2021JDJQ0006).
关键词
金属/氢氧化物界面
原位构筑
电催化硝酸根还原
氨合成
选择性
Metal/hydroxide interface
In situ construction
Electrocatalytic nitrate reduction
Ammonia synthesis
Selectivity