摘要
研究目的:探究土地利用碳排放效率的空间关联网络特征及其形成机制,为我国省域层面土地利用碳排放效率的协同提升提供参考依据。研究方法:非参数SBM效率测算法和社会网络分析法。研究结果:(1)2002—2019年中国省域土地利用碳排放效率波浪式下降,呈现“东高西低”的空间分布特征;(2)样本研究期内形成了以京、沪、苏、浙为核心点的复杂但相对稳定的空间关联网络结构,东部发达省份在信息资源、权力、声望及影响方面优势明显,省域之间等级结构呈现强化趋势;(3)净受益板块和经纪人板块成员为北京、长三角和珠三角地区的发达省份,双向溢出板块成员主要位于东北、津冀、黄河中下游地区,净溢出板块成员主要为长江中下游、西北和西南地区的中西部欠发达省份;(4)空间关联网络的形成是地理邻近、经济发展、土地利用强度、土地利用结构和城市化等因素差异综合作用的结果,资源禀赋差异、市场机制调节、政府宏观调控和信息技术进步为主要驱动机制。研究结论:优化土地利用碳排放效率空间关联网络,对于协同提升土地利用碳排放效率以促进高质量发展和践行“双碳”战略具有重要意义。
The purpose of this study is to investigate the evolution characteristics and formation mechanism of the spatial correlation network of land use carbon emission efficiency,to provide a reference for the collaborative improvement in land use carbon emission efficiency.The research methods include non-parametric SBM efficiency model and social network analysis.The results show that:1)provincial land use carbon emission efficiency in China declined in a wavy pattern from 2002 to 2019.It presented the spatial distribution characteristics of“high in the east and low in the west”.2)During the research period,it formed a complex but relatively stable spatial correlation network structure with Beijing,Shanghai,Jiangsu and Zhejiang as the core points.The developed eastern provinces had obvious advantages in information resources,power,prestige and influence.The hierarchical structure between provinces exhibited a strengthening trend.3)The results of block model analysis indicated that Beijing and the developed provinces in the Yangtze River Delta and the Pearl River Delta belonged to the net benefit plate and broker plate.The Northeast region,Tianjin and Hebei region,the middle and lower reaches of the Yellow River region constituted two-way overflow plates.The central and western underdeveloped provinces located in the middle and lower reaches of the Yangtze River,the northwestern and southwestern regions were net overflow plates.4)The formation of spatial correlation network stemmed from the comprehensive effect of geographical proximity,economic development,land use intensity,land use structure,urbanization,and other factors.Resource endowment differences,market mechanism adjustment,government macrocontrol and information technology progress were the main driving mechanisms.In conclusion,the optimization of spatial correlation network is of great significance for the collaborative improvement in land use carbon emission efficiency.It can promote high-quality development and fulfill the“dual-carbon”goals strategy.
作者
张苗
刘璇
彭山桂
张玉臻
陈银蓉
文兰娇
ZHANG Miao;LIU Xuan;PENG Shangui;ZHANG Yuzhen;CHEN Yinrong;WEN Lanjiao(School of Economics and Management,Shandong Agricultural University,Tai’an 271018,China;College of Management and Economics,Tianjin University,Tianjin 300072,China;College of Urban and Environmental Sciences,Peking University,Beijing 100871,China;Peking University-Lincoln Institute Center for Urban Development and Land Policy,Beijing 100871,China;School of Public Administration,Huazhong Agricultural University,Wuhan 430070,China)
出处
《中国土地科学》
CSCD
北大核心
2023年第10期91-101,共11页
China Land Science
基金
国家自然科学基金项目(42001252,42101272,42271270)
山东省社科规划基金青年项目(23DGLJ24)
教育部人文社科基金规划项目(22YJA790065)。
关键词
土地利用
碳排放效率
社会网络分析法
空间关联网络
land use
carbon emission efficiency
social network analysis
spatial correlation network