期刊文献+

基于心脏磁共振电影图像的压缩激励残差U形网络左心肌分割 被引量:1

Squeeze-and-excitation Residual U-shaped Network for Left Myocardium Segmentation Based on Cine Cardiac Magnetic Resonance Images
下载PDF
导出
摘要 左心肌分割对心脏疾病诊疗具有重要意义.但左心肌内部毗邻乳头肌、小梁,外部与周围组织灰度相近,是分割难点.本文首先对心脏磁共振电影图像数据进行感兴趣区域提取等预处理;其次,搭建融合了压缩激励模块和残差模块的U形网络(SERU-net)分割左心肌;最后,利用75例数据训练SERU-net网络,对18例数据进行预测.基于本文方法的分割结果相对于金标准的Dice系数与豪斯多夫距离均值分别是0.902、2.697 mm;利用本文方法分割得到的舒张末期、收缩末期左心室心肌质量与金标准的相关系数和偏差均值分别是0.995、0.993和3.784 g、2.338 g.结果表明,本文方法与金标准匹配程度较高,有望辅助诊断心脏疾病. The left myocardium segmentation is significant for the diagnosis and prognosis of cardiovascular diseases.However,the internal part of the left myocardium is adjacent to the papillary muscle and trabeculae,and the external part is similar to the surrounding tissues in terms of grey level,which adds to difficulties facing segmentation.In this paper,the original datasets of cine cardiac magnetic resonance images were firstly pre-processed by extracting the region of interest.Then,squeeze-and-excitation residual U-shaped network(SERU-net),combining SE module and residual module,was built to segment the left myocardium.Finally,75 pre-processed data were used to train SERU-net to predict the segmentation of 18 other cases.Compared with the ground truth,the average of Dice coefficient and Hausdorff distance are 0.902 and 2.697 mm.The correlation coefficient and mean deviation of end diastolic-left ventricular mass are 0.995 and 3.784 g,and that of end systolic-left ventricular mass are 0.993 and 2.338 g,respectively.The results show that SERU-net segmentation is close to the ground truth,and is prospective in assisting the diagnosis of heart diseases.
作者 王慧 王甜甜 王丽嘉 WANG Hui;WANG Tiantian;WANG Lijia(School of Medical Instrument and Food Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China)
出处 《波谱学杂志》 CAS 北大核心 2023年第4期435-447,共13页 Chinese Journal of Magnetic Resonance
关键词 心脏磁共振电影图像 左心肌分割 压缩激励残差U形网络 深度学习 cine cardiac magnetic resonance image(cine-CMRI) left myocardium segmentation squeeze-and-excitation residual U-shaped network deep learning
  • 相关文献

参考文献4

二级参考文献17

共引文献3394

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部