期刊文献+

基于改进SSD和ISESAM融合的无人机弱小目标检测方法

Detection of UAV Weak and Small Objects Based on Improved SSD and ISESAM Fusion
下载PDF
导出
摘要 针对低空无人机目标检测过程中出现的弱小目标、飞行模糊和背景相似,导致目标检测精度降低的问题,论文提出了改进SSD算法以提升目标检测精度。采用轻量化SSD(SSD-MobileNetV3)算法为检测框架,减少模型参数,降低计算复杂度。同时提出一种改进时空注意力(ISESAM)模块,构建通道和空间注意力机制,嵌入YOLOV4网络提高弱小目标检测精度。改进SSD算法的激活函数有效解决神经元可能“失活”的问题,可在低层网络中更有效地提取图像特征。在PASCAL VOC和COCO合成的数据集上实验,结果表明论文提出的改进SSD算法获得的检测精度为90.0%。与SSD-MobileNetV3相比,检测精度提高了4.0%,说明论文提出的改进SSD方法对低空无人机目标的检测更加具有鲁棒性。 In the problems of weak targets,flight blur and background similarity in the process of low-altitude UAV target detection,an improved SSD algorithm is proposed to improve the target detection accuracy.The lightweight SSD(SSD-MobileNetV3)algorithm is used as the detection framework to achieve low-altitude UAV target detection,reducing model parameters and computational complexity.Simultaneously,an improved spatiotemporal attention(ISESAM)module is proposed to construct channel and spatial attention mechanisms to improve the detection accuracy of weak and small targets.The activation function of the improved SSD algorithm can effectively solve the problem of possible"inactivation"of neurons and can more effectively extract image features from the low-level network.Experiments on the datasets synthesized by PASCAL VOC and COCO show that the detection accuracy obtained by the method proposed in this paper is 90.0%.Compared with SSD-MobileNetV3,the detection accuracy is improved by 4.0%,indicating that the improved SSD method proposed in this paper is more robust for the detection of low-altitude UAV targets.
作者 张银环 薛静云 王宁宁 韩泽佳 ZHANG Yinhuan;XUE Jingyun;WANG Ningning;HAN Zejia(Civil&Architectural Engineering,Weinan Vocational&Technical College,Weinan 714000;School of Mechatronic Engineering,Xi'an Technological University,Xi'an 710021)
出处 《舰船电子工程》 2023年第9期23-28,35,共7页 Ship Electronic Engineering
基金 国家自然科学基金项目(编号:6207010855) 渭南市科学技术局项目(编号:2020ZDYF-JCYJ-235) 渭南市科学技术局重点研发计划(编号:2022ZDYFJH-134)资助 渭南职业技术学院校级教改项目(编号:21WJYZ04) 渭南职业技术学院青年科技创新团队建设项目(编号:WZYQNKJTD202309)。
关键词 SSD算法 MobileNetV3 注意力机制 目标检测 SSD algorithm MobileNetV3 attention mechanism object detection
  • 相关文献

参考文献5

二级参考文献42

共引文献130

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部