期刊文献+

基于Wavelet-LSTM模型的高速公路入口短时交通流预测

Short-term traffic flow prediction at highway entrances based on Wavelet-LSTM model
下载PDF
导出
摘要 为提高高速公路短时交通流预测的准确度,基于高速公路实时的收费数据,采用小波分解(wavelet decomposition,Wavelet)和长短时记忆(longshort-term memory,LSTM)相结合的方法,构建Wavelet-LSTM短时交通流组合预测模型,并与单一模型LSTM、随机森林(Randomforest,RF)及组合模型Wavelet-RF进行对比。结果表明,提出的组合预测模型具有更高的预测精度,且能更有效地把握高速公路交通流的变化,该模型预测准确度接近94%,平均绝对百分比误差为6.7%,比LSTM、RF、Wavelet-RF分别提高了11.41%、13.65%、1.73%。借助于更精确的交通流预测模型,可为智慧高速建设提供一定的助力。 In order to improve the accuracy of highway shortterm traffic flow prediction,this paper uses a combination of wavelet decomposition(Wavelet)and long short term memory(LSTM)to construct a Wavelet-LSTM short-term traffic flow prediction model based on real-time highway toll data,and compares it with some single model LSTM,random forest(RF)and combined model Wavelet-RF.The results show that the combined prediction model proposed in this paper has higher prediction accuracy and is more effective in grasping the changes of highway traffic flow,with a prediction accuracy of nearly 94%and an average absolute percentage error of 6.7%,which is 11.41%,13.65%and1.73%higher than LSTM,RF and Wavelet-RF respectively,with the help of more accurate traffic flow prediction model,a certain amount of assistance can be provided to the construction of smart highway.
作者 刘兴国 夏传飞 王秀兰 冯镛 余聪 LIU Xingguo;XIA Chuanfei;WANG Xiulan;FENG Yong;YU Cong(School of Transportation and Logistics Engineering Shandong Jiaotong University,Shandong Jinan 250357 China;Linyi Transportation Law Enforcement Detachment,Shandong Linyi 276000 China;Shandong College of Highway Technician,Shandong Jinan 253020 China)
出处 《山东交通科技》 2023年第5期52-55,共4页
基金 国家社会科学基金,项目编号:19BJY173 山东省重点研发计划,项目编号:2021RZA02025 山东省交通科技计划,项目编号:2019B67,2020B50,2022B31。
关键词 高速公路 短时交通流预测 小波分解 长短时记忆神经网络 highway short-term traffic flow prediction wavelet decomposition long short term memory neural network
  • 相关文献

参考文献6

二级参考文献65

共引文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部