摘要
主要研究两个亏格不为1的二次可逆Lotka-Volterra系统的周期环域在小扰动下产生极限环的个数问题.应用完全切比雪夫系统的性质来判定该系统的二阶Melnikov函数的零点个数,从而证明了在二次扰动下,这两个系统的周期环域能分支出两个极限环.
The number of limit cycles bifurcated from the periodic annulus of two quadratic reversible Lotka-Volterra systems with non-genus 1 under small bifurcations is studied.Using the properties of complete Chebyshev systems to estimate the number of zeros of second-order Melnikov function,it is proven that the number of limit cycles bifurcated from the periodic annulus of the two quadratic reversible Lotka-Volterra systems are both 2 under quadratic perturbations.
作者
吴莎
吴奎霖
WU Sha;WU Kuilin(School of Mathematics and Statistics,Guizhou University,Guiyang 550025,China)
出处
《中山大学学报(自然科学版)(中英文)》
CAS
CSCD
北大核心
2023年第6期127-134,共8页
Acta Scientiarum Naturalium Universitatis Sunyatseni
基金
国家自然科学基金(11661017)
贵州省科学技术基金(黔科合基础[2020]1Y405)。
关键词
可逆LV系统
ABEL积分
极限环
亏格1
reversible Lotka-Volterra system
Abelian integral
limit cycles
genus one