期刊文献+

亏格不为1的二次可逆LV系统的极限环分支

Bifurcation of limit cycles for quadratic reversible Lotka-Volterra systems with non-genus one
下载PDF
导出
摘要 主要研究两个亏格不为1的二次可逆Lotka-Volterra系统的周期环域在小扰动下产生极限环的个数问题.应用完全切比雪夫系统的性质来判定该系统的二阶Melnikov函数的零点个数,从而证明了在二次扰动下,这两个系统的周期环域能分支出两个极限环. The number of limit cycles bifurcated from the periodic annulus of two quadratic reversible Lotka-Volterra systems with non-genus 1 under small bifurcations is studied.Using the properties of complete Chebyshev systems to estimate the number of zeros of second-order Melnikov function,it is proven that the number of limit cycles bifurcated from the periodic annulus of the two quadratic reversible Lotka-Volterra systems are both 2 under quadratic perturbations.
作者 吴莎 吴奎霖 WU Sha;WU Kuilin(School of Mathematics and Statistics,Guizhou University,Guiyang 550025,China)
出处 《中山大学学报(自然科学版)(中英文)》 CAS CSCD 北大核心 2023年第6期127-134,共8页 Acta Scientiarum Naturalium Universitatis Sunyatseni
基金 国家自然科学基金(11661017) 贵州省科学技术基金(黔科合基础[2020]1Y405)。
关键词 可逆LV系统 ABEL积分 极限环 亏格1 reversible Lotka-Volterra system Abelian integral limit cycles genus one
  • 相关文献

参考文献1

二级参考文献17

  • 1Arnold, V. I., Some unsolved problems in the theory of differential equations and mathematical physics, Russian Math. Surveys, 44,1989, 157-17l.
  • 2Arnold, V. I., Arnold's Problems, Springer-Verlag, Berlin, 2005.
  • 3Chicone, C. and Jacobs, M., Bifurcation of limit cycles from quadratic isochronous, J. Differential Equations, 91, 1991, 268-326.
  • 4Gautier, S., Gavrilov, L. and Iliev, I. D., Perturbations of quadratic centers of genus one, Discrete Contino Dyn. Syst., 25,2009, 511-535.
  • 5Grau, M., Maiiosas, F. and Villadelprat, J., A Chebyshev criterion for Abelian integrals, Trans. ATner. Math. Soc., 363,2011, 109-129.
  • 6Hilbert, D., Mathematische Problem (Lecture), Second Internat. Congress Math. Paris 1900, Nachr. Ges. Wiss. Gottingen Math.-Phys. Kl., 1900, 253-297.
  • 7Iliev, I. D., The cyclicity of the period annulus of the quadratic Hamiltonian triangle, J. Differential Equations, 128, 1996, 309-326.
  • 8Iliev, I. D., Perturbations of quadratic centers, Bull. Sci. Math., 122, 1998, 107-16l.
  • 9Ilyashenko, Y., Centennial history of Hilbert's 16th problem, Bull. Amer. Math. Soc., 39, 2002, 301-3.',4.
  • 10Karlin, S. and Studden, W., Tchebycheff Systems: With Applications in Analysis and Statistics, Interscience Publishers, New York, 1966.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部