期刊文献+

一类时滞分数阶Volterra微积分方程组的严格误差分析

Sharp error estimate for fractional Volterra integro-differential equations with delay
下载PDF
导出
摘要 采用谱配置方法分析带一般时滞项的分数阶Volterra微积分方程.通过严格的误差分析证明了近似解的误差和近似分数阶导数的误差在L^(∞)和L_(ω^(-μ,-μ))^(2)模意义下呈指数衰减.最后用数值例子来验证理论分析的正确性. Spectral methods are developed for solving fractional differential equations with vanishing delay numerically.Sharp error estimates are carried out,which indicates that the error of solution and the error of exact fractional derivative decay exponentially in both L^(∞)and L_(ω^(-μ,-μ))^(2).In the end,a numerical example is presented to confirm our theoretical findings.
作者 郑伟珊 ZHENG Weishan(College of Mathematics and Statistics,Hanshan Normal University,Chaozhou 521041,China)
出处 《中山大学学报(自然科学版)(中英文)》 CAS CSCD 北大核心 2023年第6期152-158,共7页 Acta Scientiarum Naturalium Universitatis Sunyatseni
基金 广东省教育厅项目(2020KTSCX078,2021KTSCX071,2022KTSCX077,HSGDJG21356-372) 韩山师范学院项目(521036,QD202212)。
关键词 分数阶Volterra微积分方程 Jacobi配置法 时滞 误差估计 fractional Volterra integro-differential equation Jacobi collocation method delay sharp error estimate
  • 相关文献

参考文献5

二级参考文献67

  • 1康玲,王乘,姜铁兵.Volterra神经网络水文模型及应用研究[J].水力发电学报,2006,25(5):22-26. 被引量:9
  • 2H. Brunner, Collocation Methods for Volterra Integral and Related Functional Equations Methods, Cambridge University Press 2004.
  • 3H. Brunner, 3.P. Kauthen, The numerical solution of two-dimensional Volterra Integral Equation, IMA d. Numer. Anal., 9 (1989), 45-59.
  • 4H. Brunner and T. Tang, Polynomial spline collocation methods for the nonlinear Basset equation, Comput. Math. Appl., 18 (1989), 449-457.
  • 5C. Canuto, M.Y. Hussaini, A. Quarteroni and T.A. Zang, Spectral Methods: Fundamentals in Single Domains, Springer-Verlag 2006.
  • 6L.M. Delves, J.L. Mohanmed, Computational Methods for Integral Equations, Cambridge University Press 1985.
  • 7G.N. Elnagar and M. Kazemi, Chebyshev spectral solution of nonlinear Volterra-Hammerstein integral equations, J. Comput. Appl. Math., 76 (1996), 147-158.
  • 8H. Fujiwara, High-accurate numerical method for integral equations of the first kind under multiple-precision arithmetic, Preprint, RIMS, Kyoto University, 2006.
  • 9B. Guo and L. Wang, Jacobi interpolation approximations and their applications to singular differential equations, Adv. Comput. Math., 14 (2001), 227-276.
  • 10B. Guo and L. Wang, Jacobi approximations in non-uniformly Jacobi-weighted Sobolev spaces, J. Approx. Theory, 128 (2004), 1-41.

共引文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部