摘要
针对传统BP神经网络在学习过程中存在的收敛缓慢、容易陷入局部极小化等缺点,引入收敛速度快、全局寻优能力强的粒子群算法,从而建立了PSO-BP模型,并以某土石坝渗流监测数据为例,对土石坝渗流进行了预测,对比预测模型、BP模型、传统统计回归模型的结果表明,PSO-BP模型具有更高的拟合性和收敛性。
Aiming at the shortcomings of slow convergence and easily falling into the local minimum in the learning process for the traditional BP neural network,particle swarm algorithm with fast convergence speed and strong global timization op-ability was introduced so as to establish the PSO-BP model.Taking the seepage monitoring data of an earth and rockfill dam as an example,the seepage was predicted.Compared with the prediction model,the BP model and the traditional statistical regression model,the results show that the PSO-BP model has a higher goodness-of-fit and conver-gence.
作者
胡孟凡
欧斌
张才溢
王春华
傅蜀燕
HU Meng-fan;OU Bin;ZHANG Cai-yi;WANG Chun-hua;FU(School Shu-yan of Water Conservancy,Yunnan Agricultural University,Kunming 650201,China)
出处
《水电能源科学》
北大核心
2023年第12期90-92,89,共4页
Water Resources and Power
基金
国家自然科学基金项目(52069029)。
关键词
土石坝
渗流预测
BP神经网络
粒子群算法
earth and rockfill dam
seepage prediction
BP neural network
particle swarm algorithm