期刊文献+

Unpacking the black box of deep learning for identifying El Nino-Southern oscillation

原文传递
导出
摘要 By training a convolutional neural network(CNN) model, we successfully recognize different phases of the El Nino-Southern oscillation. Our model achieves high recognition performance,with accuracy rates of 89.4% for the training dataset and 86.4% for the validation dataset.Through statistical analysis of the weight parameter distribution and activation output in the CNN, we find that most of the convolution kernels and hidden layer neurons remain inactive,while only two convolution kernels and two hidden layer neurons play active roles. By examining the weight parameters of connections between the active convolution kernels and the active hidden neurons, we can automatically differentiate various types of El Nino and La Nina,thereby identifying the specific functions of each part of the CNN. We anticipate that this progress will be helpful for future studies on both climate prediction and a deeper understanding of artificial neural networks.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2023年第9期149-167,共19页 理论物理通讯(英文版)
基金 supported by the National Natural Science Foundation of China (Grant No. 12135003)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部