期刊文献+

基于EEMD-LVQ的机电作动器故障诊断方法

Fault Diagnosis based on EEMD-LVQ for Electro-mechanical Actuator
下载PDF
导出
摘要 针对传统基于集合经验模态分解算法在故障特征区分性和LVQ算法在训练效率和稳定性方面存在的问题,提出一种基于集合经验模态分解-学习矢量量化网络(Ensemble Empirical Mode Decomposition,Learning Vector Quantization,EEMD-LVQ)的机电作动器(Electro-mechanicalActuator,EMA)的故障诊断方法。首先,通过EEMD算法对信号进行分解并计算能量分布向量,并利用相关系数筛选特征实现降维,增强故障特征向量的区分性;然后,利用经过余弦衰减算法优化的LVQ神经网络对故障特征向量集进行训练和检测,从而获得诊断结果。实际EMA数据的试验验证和对比分析证明了提出的故障诊断方法可提高LVQ算法的训练效率,并且可以兼顾后期的稳定性。 The fault diagnosis method based on ensemble empirical mode decomposition(EEMD)and learning vector quantization(LVQ)is proposed for electro-mechanical actuator(EMA),which is aiming to address the problems of the traditional EEMD algorithm in fault feature discrimination and the LVQ algorithm in training efficiency and stability.Firstly,the signal is decomposed and the energy distribution vectors are calculated using the EEMD algorithm.The features are then selected using the correlation coefficient and dimensionality reduction is performed to enhance the discriminability of the fault feature vectors.Next,the LVQ neural network,optimized with cosine decay algorithm,is used to train and detect the fault feature vector set,obtaining the diagnostic results.Experimental validation and comparative analysis of actual EMA data demonstrate that the proposed fault diagnosis method improves the training efficiency of the LVQ algorithm while also considering its stability in the later stages.
作者 王晓明 付继伟 韩松 白云鹤 李少石 WANG Xiaoming;FU Jiwei;HAN Song;BAI Yunhe;LI Shaoshi(Beijing Institute of Aerospace Systems Engineering,Beijing,100076;School of Automation Science and Electrical Engineering,Beihang University,Beijing,100191)
出处 《导弹与航天运载技术(中英文)》 CSCD 北大核心 2023年第5期1-7,共7页 Missiles and Space Vehicles
关键词 机电作动器 故障诊断 集合经验模态分解 学习矢量量化网络 electro-mechanical actuator fault diagnosis ensemble empirical mode decomposition learning vector quantization
  • 相关文献

参考文献5

二级参考文献45

  • 1胡劲松,杨世锡,吴昭同,严拱标.基于EMD和HT的旋转机械振动信号时频分析[J].振动.测试与诊断,2004,24(2):106-110. 被引量:48
  • 2王奉涛,马孝江,邹岩崑,张志新.基于小波包分解的频带局部能量特征提取方法[J].农业机械学报,2004,35(5):177-180. 被引量:43
  • 3李正朝,宋国乡.小波包理论及其应用[J].西安电子科技大学学报,1993,20(A12):120-129. 被引量:1
  • 4赵志刚,单晓虹.一种基于遗传算法的RBF神经网络优化方法[J].计算机工程,2007,33(6):211-212. 被引量:42
  • 5董慧芬.复合式余度机电作动系统控制策略的研究[D].北京:北京航空航天大学自动化科学与电气工程学院,2006.
  • 6严仰光,龚春英,王慧贞,等.多电飞机和电气科技[J].电源技术学报,2007,5(1):1-4.
  • 7Weimer J A. Electrical power technology for the more electrical aircraft[C]//Digital Avionics system Conference, AIAA/IEEE. [ S. 1. ]: AIAA/IEEE, 1993 445 450.
  • 8/ Jones T. Development of high temperature actuatiot / system for advanced aircraft engines[R], AIAA 90I 2031,1990. /.
  • 9Colegrove P G. Integrated power unit for a more e- lectrical airplane[R]. AIAA 93 1188,1993.
  • 10Elbuluk M E, Kankam M D. Potential starter/gener- ator technologies for future aerospace applications [J]. Aerospace and Electronic Systems Magazine, 1997, 12(5): 24-31.

共引文献91

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部