期刊文献+

改进的蒙特卡洛方法用于烟丝近红外光谱定量分析中奇异样本的识别 被引量:1

Improved Monte Carlo method for outlier detection in quantitative analysis of cigarette cut samples using near infrared spectroscopy
下载PDF
导出
摘要 【目的】提高烟草及烟草制品的化学成分近红外光谱定量分析校正模型的准确性。【方法】通过改进蒙特卡洛奇异样本检测方法构建不同的定量模型,获得正常样本和可疑样本的预测误差分布,依据分布间的差异识别正常样本与奇异样本。【结果】改进后的烟丝中化学成分的近红外光谱定量分析模型的相关系数和校正均方根误差得到明显提高和改善;总植物碱、总糖、还原糖、总氮、钾和氯的含量模型的预测均方根误差(RMSEP)分别由0.061%、0.799%、0.926%、0.054%、0.115%、0.076%降低到0.059%、0.786%、0.817%、0.048%、0.107%、0.058%;模型稳健性的评价参数SEP/SEC的值均小于1.2。【结论】该方法剔除奇异样本后所得模型具有较好的稳健性。 [Objective]This study aims to improve the accuracy of calibration models for quantitative analysis of chemical compositions in tobacco and tobacco products using near-infrared spectroscopy.[Methods]By using an improved Monte Carlo outlier detection(IMCOD)method,a pool of quantitative models were established.On this basis,a distribution of the prediction errors of normal and suspicious samples was achieved.Based on the distribution differences,normal and outlier samples were identified.[Results]By applying IMCOD to the NIR quantification of the concerned compositions in cigarette cut samples,it can be known that the correlation coefficients of resultant models were not only enhanced significantly but also the root mean square errors of prediction(RMSEP)were improved.The RMSEP values of independent validation samples decreased from 0.061%,0.799%,0.926%,0.054%,0.115%and 0.076%to 0.059%,0.786%,0.817%,0.048%,0.107%and 0.058%in content of total alkaloids,total sugars,reducing sugars,total nitrogen,potassium and chlorine,respectively.All SEP-to-SEC ratio values obtained were less than 1.2.[Conclusion]This indicates the calibration models excluding outlier samples have good robustness and predictive performance.
作者 胡芸 刘剑 白兴 阮艺斌 张辞海 姬厚伟 李博岩 HU Yun;LIU Jian;BAI Xing;RUAN Yibin;ZHANG Cihai;JI Houwei;LI Boyan(Technology Center of China Tobacco Guizhou Industrial Co.,Ltd.,Guiyang 550009,China;School of Public Health,Guizhou Medical University,Guiyang 550025,China)
出处 《中国烟草学报》 CAS CSCD 北大核心 2023年第6期1-8,共8页 Acta Tabacaria Sinica
基金 国家自然科学基金资助项目(No.21864008) 贵州省科技计划支持项目(黔科合基础[2018]1130) 中国烟草总公司重大专项“烟草近红外大数据构建及应用研究”(No.110201901023(SJ-02)) 贵州中烟工业有限责任公司科技项目“烟用香精香料配成品质量稳定性评价方法的研究与应用”(No.GZZYKJ/JZ2022GSY013)。
关键词 近红外光谱 奇异样本识别 蒙特卡洛 near infrared spectroscopy outlier detection Monte Carlo
  • 相关文献

参考文献2

二级参考文献73

  • 1张录达,苏时光,王来生,李军会,杨丽明.支持向量机(SVM)在傅里叶变换近红外光谱分析中的应用研究[J].光谱学与光谱分析,2005,25(1):33-35. 被引量:47
  • 2Siesler H W, Ozaki Y, Kawata S, Heise H M. Near-infrared spectroscopy, principles, instruments, applications. New York: Wiley, 2002. 11-35.
  • 3Massart D L, Vandeginste B G M. Handbook of Chemometrics and Qualimetrics: Part A. Amsterdam: Elsevier, 1997. 331-340.
  • 4Pell R J. Multiple outlier detection for multivariate calibration using robust statistical techniques. Chemom Intell Lab Syst, 2000, 52(1): 87- 104.
  • 5Chen D, Shao X G, Hu B, Su Q D. Simultaneous wavelength selection and outlier detection in multivariate regression of near-infrared spectra. Anal Sci, 2005, 21(2): 161-166.
  • 6Karstang T V, Manne R. Optimized scaling: a novel approach to linear calibration with closed data sets. Chemom Intell Lab Syst, 1992, 14(1-3): 165-173.
  • 7Geladi P, MacDougall D, Martens H. Linearization and scatter correction for near infrared reflectance spectra of meat. Appl Spectrosc, 1985, 39(3): 491-500.
  • 8Wold S, Antti H, Lindgren F, Ohman J. Orthogonal signal correction of near-infrared spectra. Chemom Intell Lab Syst, 1998, 44(1-2): 175-185.
  • 9Chen D, Hu B, Shao X G, Su Q D. Removal of major interference sources in aqueous near infrared spectroscopy techniques. Anal Bioanal Chem, 2004, 379(4): 714-719.
  • 10Westerhuis J A, de Jong S, Smilde A K. Direct orthogonal signal correction. Chemom Intell Lab Syst, 2001, 56(1): 13-25.

共引文献33

同被引文献16

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部