摘要
为了解决多视图行人检测算法对多尺度目标检测效果不佳的问题,提出一种采用膨胀卷积编码进行多视图信息聚合的算法。利用不同膨胀率的膨胀卷积在单层特征层中生成不同尺度的感受野,覆盖目标所有尺度的范围,提高对多尺度目标的检测能力。在Wildtrack数据集上进行仿真实验的结果显示,采用所提算法多目标检测精度最高可达90.7%。
To address the issue of poor detection performance for multi-scale objects in multi-view pedestrian detection algorithms,a dilated encoder method is proposed for aggregating multi-view information.The dilated encoder utilizes dilated convolutions with different dilation rates in a single layer to generate receptive fields of different scales,thus covering the entire scale range of the targets and improving the detection capability for multi-scale objects.Experimental results on the Wildtrack dataset show that the algorithm achieves a maximum multiple object detection accuracy of 90.7%.
作者
叶洪滨
林政宽
程红举
YE Hongbin;LIN Zhengkuan;CHENG Hongju(College of Computer and Data Science,Fuzhou University,Fuzhou 350108,China)
出处
《北京邮电大学学报》
EI
CAS
CSCD
北大核心
2023年第5期66-71,共6页
Journal of Beijing University of Posts and Telecommunications
关键词
多视数据
特征融和
膨胀卷积
复杂场景
行人检测
多级检测
multi-view data
feature fusion
dilated convolution
crowded scene
pedestrian detection
multi-scaledetection