期刊文献+

重载铁路变电主设备关键状态参数趋势预测技术研究 被引量:2

Trend Prediction Technology of Key State Parameters of Main Substation Equipment in Heavy-Haul Railway
下载PDF
导出
摘要 变电主设备在铁路系统中起着至关重要的作用,准确预测其状态参数的趋势对于设备的维护和运行至关重要。从状态参数选取、解释分析、采集和预处理等方面,阐述重载铁路变电主设备关键状态参数分析方法。在此基础上,分析重载铁路变电所场景下的设备状态分类评估、设备状态趋势预测、设备缺陷处置和设备检修时点评估等4类算法场景,提出一种基于机器学习和数据挖掘的趋势预测算法,并根据数据的特点,完善特征提取方法,提高模型的准确性和泛化能力。针对设备状态趋势预测场景,通过实证分析对提出的预测算法进行验证和评估。通过预测关键状态参数的趋势,可以及时采取维护和保养措施,从而降低设备故障率,提高变电所的运行效率和可靠性。 The main substation equipment plays an important role in the railway system.Accurately predicting the trend of its state parameters is significant for equipment maintenance and operation.From the aspects of state parameter selection,interpretation and analysis,acquisition,and pretreatment,this paper expounded the analysis method of key state parameters in the main substation equipment of heavy-haul railway.On this basis,it analyzed four kinds of algorithm scenarios,including equipment state classification evaluation,equipment state trend prediction,equipment defect disposal,and time point evaluation of equipment maintenance under the scenario of heavy-haul railway substation,and proposed a trend prediction algorithm based on machine learning and data mining.According to the data characteristics,the feature extraction method was improved to enhance the accuracy and generalization ability of the model.For the prediction scenario of equipment state trend,the proposed prediction algorithm was verified and evaluated by empirical analysis.By predicting the trend of key state parameters,maintenance measures can be taken in time to reduce the equipment failure rate and improve the operation efficiency and reliability of the substation.
作者 戴晋 刘寅秋 何占元 刘洋 王烨堃 李强 DAI Jin;LIU Yinqiu;HE Zhangyuan;LIU Yang;WANG Yekun;LI Qiang(Locomotive&Car Research Institute,China Academy of Railway Sciences Corporation Limited,Beijing 100081,China;Science and Technology Department,Guoneng Shuohuang Railway Development Co.,Ltd.,Cangzhou 062350,Hebei,China;Suning Branch,Guoneng Shuohuang Railway Development Co.,Ltd.,Cangzhou 062350,Hebei,China;CHN Energy Institute of Transportation Technology Research,Beijing 100080,China)
出处 《铁道运输与经济》 北大核心 2023年第11期97-105,共9页 Railway Transport and Economy
基金 国家能源集团科技创新项目(GJNY-20-231) 中国铁道科学研究院集团有限公司科研项目(2022YJ337)。
关键词 重载铁路 变电主设备 状态参数 机器学习 趋势分析 Heavy-Haul Railway Main Substation Equipment Status Parameters Machine Learning Trend Analysis
  • 相关文献

参考文献11

二级参考文献67

  • 1李刚.铁路信号监测技术发展与展望[J].铁道通信信号,2019,0(S01):154-161. 被引量:6
  • 2李德毅,孟海军,史雪梅.隶属云和隶属云发生器[J].计算机研究与发展,1995,32(6):15-20. 被引量:1240
  • 3张秀峰,王毅非.地铁馈线电流增量保护ΔI检出精度与分离方法的研究[J].西南交通大学学报,1997,32(1):23-27. 被引量:11
  • 4陈振生.高压开关柜手车触头温升超标在线监测装置[J].电气制造,2007(6):78-82. 被引量:5
  • 5Liu K. Comparison of very short-term load forecasting technique[J]. IEEE Trans. Power Systems, 1996,11(2): 877-882.
  • 6Hippert H S, Pefreira C E, Souza R C. Neural network for short-term load forecasting: A review and evaluation[J].IEEE Trans. Power System. 2001,16(2): 44-54.
  • 7Muller K R, Smola A J, Ratsch G, et al.Prediction time series with support vector machines[C].In Proc of ICANN'97., Springer LNCS 1327, Bedin,1997, 999-1004.
  • 8Papadakis S E, Theocharis J B, Kiartzis S J, et al. A novel approach to short-term load forecasting using fuzzy neural net-works[J].IEEE Trans. Power Systems, 1998,13(2):480-492.
  • 9Vapnik V, Golowich S, Smola A. Support vector method for function approximation, regression estimation, and signal processing[M].Cambridge, MA, MIT Press, 1997, 281-287.
  • 10Smola A J. Regression estimation with support vector learning machines[D]. Technische Universit"at M" unchen.1996.

共引文献934

同被引文献10

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部