期刊文献+

Improving low-voltage ride-through capability of a multimegawatt DFIG based wind turbine under grid faults 被引量:9

原文传递
导出
摘要 Large integration of doubly-fed induction generator(DFIG)based wind turbines(WTs)into power networks can have significant consequences for power system operation and the quality of the energy supplied due to their excessive sensitivity towards grid disturbances.Under voltage dips,the resulting overcurrent and overvoltage in the rotor circuit and the DC link of a DFIG,could lead to the activation of the protection system and WT disconnection.This potentially results in sudden loss of several tens/hundreds of MWs of energy,and consequently intensifying the severity of the fault.This paper aims to combine the use of a crowbar protection circuit and a robust backstepping control strategy that takes into consideration of the dynamics of the magnetic flux,to improve DFIG’s Low-Voltage Ride Through capability and fulfill the latest grid code requirements.While the power electronic interfaces are protected,the WTs also provide large reactive power during the fault to assist system voltage recovery.Simulation results using Matlab/Simulink demonstrate the effectiveness of the proposed strategy in terms of dynamic response and robustness against parametric variations.
出处 《Protection and Control of Modern Power Systems》 2020年第1期390-402,共13页 现代电力系统保护与控制(英文)
  • 相关文献

同被引文献114

引证文献9

二级引证文献86

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部