期刊文献+

Boundedness of iterated spherical average

原文传递
导出
摘要 The iterated spherical average∆(A1)^(N)is an important operator in harmonic analysis,and has very important applications in approximation theory and probability theory,where∆is the Laplacian,A_(1)is the unit spherical average and(A1)^(N)is its iteration.In this paper,we mainly study the sufficient and necessary conditions for the boundedness of this operator in Besov-Lipschitz space,and prove the boundedness of the operator in Triebel-Lizorkin space.Moreover,we use above conclusions to improve the existing results of the boundedness of this operator in L^(p)space.
出处 《Frontiers of Mathematics in China》 CSCD 2023年第2期125-137,共13页 中国高等学校学术文摘·数学(英文)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部