摘要
针对现有WiFi单一场景下手势识别模型泛化能力差,跨域识别精度低的问题,提出了基于3D残差卷积注意力网络(RAN)的信道状态信息(CSI)跨场景手势识别方法,通过提取与场景无关的特征人体坐标速度谱(BVP),并结合3D RAN来实现跨场景手势识别。结果表明:所提出的方法具有较好的跨域手势识别效果,并且具有更好的泛化能力。
Aiming at the problem of poor generalization ability of gesture recognition model and low cross-domain recognition precision in existing WiFi single scene,a channel state information(CSI)cross-scene gesture recognition method based on 3D residual convolutional attention network(RAN)is proposed.By extracting scene independent feature body-coordinate velocity profile(BVP),and combining with 3D RAN,realize cross-scene gesture recognition.The results show that the proposed method has a better cross-domain gesture recognition effect and a better generalization ability.
作者
常俊
黄彬
武浩
CHANG Jun;HUANG Bin;WU Hao(Key Laboratory of Internet of Things Technology and Application for Universities of Yunnan Province,Yunnan University,Kunming 655000,China;School of Information,Yunnan University,Kunming 655000,China)
出处
《传感器与微系统》
CSCD
北大核心
2023年第12期48-52,共5页
Transducer and Microsystem Technologies
基金
国家自然科学基金资助项目(61562090)
云南省省教育厅科研基金资助项目(2019J0007)。
关键词
信道状态信息
手势识别
人体坐标速度谱
注意力机制
channel state infomation(CSI)
gesture recognition
body-coordinate velocity profile(BVP)
attention mechanism