期刊文献+

冷原子量子真空测量设备小型化研究进展综述

A Review of Progress in Miniaturization of Cold Atom Quantum Vacuum Measurement Devices
下载PDF
导出
摘要 量子真空测量是未来真空计量技术的重要发展方向,其基于物质的本征物理性质开展,具有无需校准、对真空环境扰动小、精度高等特点。目前,实验室规模的冷原子量子真空测量设备已经表现出了优秀的性能,科学家们正在努力推进量子传感器的实际应用,这意味着冷原子量子真空测量设备必须从实验室规模的大型平台转变为紧凑的小型化量子传感器。这要求小型化冷原子量子传感器同时具有很小的体积,以及在极端动态条件下优秀的工作性能。在本文中,介绍了冷原子量子传感器小型化的最新进展,重点关注了原子冷却所需的关键元件,包括激光系统、原子源、磁光阱和线圈等。讨论了各元件的小型化方案以及对传感器性能的影响,并对冷原子量子真空传感器的发展进行了展望。 Quantum vacuum measurement is an important development direction of vacuum measurement technology in the future.Based on intrinsic physical properties of matter,quantum vacuum measurement has the characteristics of no calibration,little disturbance to vacuum environment and high precision.Currently,laboratory-scale cold atom quantum vacuum measuring devices have shown excellent performance,and scientists are working hard to advance the practical application of quantum sensors,which means that cold atom quantum vacuum measuring devices must be transformed from large laboratory-scale platforms to compact miniaturization quantum sensors.This requires miniaturization quantum sensors to have both a small size and excellent performance under extreme dynamic conditions.The latest advances in cold atom quantum sensor miniaturization is presented,focusing on the key components required for atomic cooling,including laser systems,atomic sources,magneto-optical traps,and coils.The miniaturization scheme of each element and its influence on the sensor performance is discussed,and the development of cold atom quantum vacuum sensor is prospected.
作者 成永军 董猛 孙雯君 吴翔民 张亚飞 CHENG Yong-jun;DONG Meng;SUN Wen-jun;WU Xiang-min;ZHANG Ya-fei(Science and Technology on Vacuum Technology and Physics Laboratory,Lanzhou Institute of Physics,Lanzhou 730000,China)
出处 《宇航计测技术》 CSCD 2023年第6期17-24,共8页 Journal of Astronautic Metrology and Measurement
基金 国家自然科学基金(62371214)。
关键词 冷原子 真空测量 小型化 光子集成电路 光栅磁光阱 Cold atom Vacuum measurement Miniaturization Photonic integrated circuit Grating magneto-optical
  • 相关文献

参考文献1

二级参考文献24

  • 1R. Paschotta, J. Nilsson, A. C. Tropper et al.. Ytterbium- doped fiber amplifiers[J]. IEEE J. Quantum Electron. , 1997, 33(7) : 1049-1056.
  • 2G. Erbert, A. Bārwolff, J. Sebastian et al.. High power broad- area diode lasers and laser bars[J]. High Power Diode Lasers,2000, 78:173-223.
  • 3M. Frede, R. Wilhelm, D. Kracht. 250 W end-pumped Nd: YAG laser with direct pumping into the upper laser level[J].Opt. Lett. , 2006, 31(24): 3618-3619.
  • 4S. D. Setzler, M. P. Francis, Y. E. Young et al.. Resonantly pumped eyesafe erbium lasers[J]. IEEE J. Sel. Top. Quantum Electron. , 2005, 11(3): 645-657.
  • 5A. A. Demidovich, A. P. Shkadarevich, M. B. Danailov et al.. Comparison of cw laser performance of Nd: KGW, Nd: YAG, Nd:BEL, and Nd: YV04 under laser diode pumping[J]. Appl.Phys. B: Lasers and Optics, 1998, 67(1): 11-15.
  • 6P. Leisher, K. Price, S. Karlsen et al.. High-performance wavelength-locked diode lasers[C]. SPIE, 2009, 7198:719812.
  • 7J. Fricke, F. Bugge, A. Ginolas et al.. High power 980 nm broad-area lasers spectrally stabilized by surface Bragg gratings [J]. IEEE Photon. Technol. Lett. , 2010, 22(5) : 284-286.
  • 8G. J. Steckman, W. Liu, R. Platz et al.. Volume holographic grating wavelength stabilized laser diodes [J]. IEEE J. Sel. Top. Quantum Electron. , 2007, 13(3): 672-678.
  • 9T. Earles, L. J. Mawst, D. Botez. 1. 1 W continuous-wave,narrow spectral width (< 1A) emission from broad-stripe, distributed-feedback diode lasers (λ= 0. 893 ttm) [J]. Appl.Phys. Lett., 1998,73(15): 2072-2074.
  • 10Y. He, H. An, J. Cai et al.. 808 nm broad area DFB laser for solid-state laser pumping application[J]. Electron. Lett., 2009, 45(3) : 163-164.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部