期刊文献+

基于边缘计算的多用户动态带宽分配方法 被引量:1

Multi-user Dynamic Bandwidth Allocation Method Based on Edge Computing
下载PDF
导出
摘要 当前多个集群框架布置在同一个数据中心增加了动态带宽的分配时间。针对这种情况,提出一种基于边缘计算的多用户动态带宽分配方法。该方法采用循环神经网络计算构建分配模型,并通过3层分配机制和边缘框架进行带宽的弹性共享应用。用户业务的优先流转级别通过共享机制设定,促进多用户的业务需求同步传输,同时实现多用户动态带宽的分配。实验结果表明,该新方法可以基于不同的用户规模进行分类,具有高效的分配效率和实用性。 Multiple cluster frameworks in the same data cente increased the allocation time of dynamic bandwidth.In view of this situation,researchers proposed a multi-user dynamic bandwidth allocation method based on edge computing.This method uses a recurrent neural network to calculate and construct an allocation model,and applies elastic bandwidth sharing through a three-layer allocation mechanism and link framework.The priority flow level of user business is set through a sharing mechanism to promote the synchronous transmission of business needs among multiple users,while achieving dynamic bandwidth allocation among multiple users.Experimental results show that the new method can be classified based on different scale of users,and has high allocative efficiency and practicability.
作者 杨波 YANG Bo(School of Data Science,Guangzhou Huashang College,Guangzhou 511300,China)
出处 《计算机与现代化》 2023年第11期69-74,共6页 Computer and Modernization
基金 国家自然科学基金面上项目(61772221) 广州华商学院校内导师制科研项目(2022HSDS23)。
关键词 动态带宽 边缘计算 多用户 分配方法 dynamic bandwidth edge calculation multi-user distribution method
  • 相关文献

参考文献9

二级参考文献52

  • 1ADDONA D M, TETI R. Genetic algorithm-based optimiza- tion of cutting parameters in turning processes[J]. Procedia Cirp, 2013,7 (12) : 323-328.
  • 2YANG W A, GUO Y, LIAO W H. Optimization of multi- pass face milling using a fuzzy particle swarm optimization al- gorithm[J]. The International Journal of Advanced Manufac- turing Technology,2011,54(1) :45-57.
  • 3RAO R V, PAWAR P J. Parameter optimization of a multi- pass milling process using non-traditional optimization algo- rithms[J]. Applied Soft Computing, 2010,10(2) 445-456.
  • 4EMAMI M, SADEGHI M H, SARHAN A D, et al. Investi- gating the minimum quantity lubrication in grinding of A1O8 engineering ceramic[J]. Journal of Cleaner Production, 2014, 66 .. 632-643. DOh 10. 1016/j. jclepro. 2013.11. 018.
  • 5CAMPATELLI G, LORENZINI L, SCIPPA A. Optimization of process parameters using a response surface method for min- imizing power consumption in the milling of carbon steel[J]. Journal of Cleaner Production, 2014, 66 : 309-316. DOI.. 10. 1016/j. jclepro. 2013.10. 025.
  • 6RAJEMI M F, MATIVENGA P T, ARAMCHAROEN A. Sustainable machining selection of optimum turning conditions based on minimum energy considerations [J]. Journal of Cleaner Production, 2010,18(10) : 1059-1065.
  • 7BHUSHAN R K. Optimization of cutting parameters for mini- mizing power consumption and maximizing tool life during ma- chining of A1 alloy SiC particle composites[J]. Journal of Cleaner Production, 2013, 39 242-254. DOh 10. 1016/j. jclepro. 2012.08. 008.
  • 8YAN Jihong, LI Lin. Multi-objective optimization of milling parameters the trade-offs between energy, production rate and cutting quality[J]. Journal of Cleaner Production, 2013, 52 462-471. DOh 10. 1016/j. jclepro. 2013.02. 030.
  • 9KURAM E, OZCELIK B, BAYRAMOGLU M, et al. Opti- mization of cutting fluids and cutting parameters during end milling by using D-optimal design of experiments[J]. Journal of Cleaner Production, 2013,42: 159-166. DOI:10. 1016/j. jelepro. 2012.11. 003.
  • 10ABHANG L B, HAMEEDULLAH M. Power prediction model for turning EN-31 steel using response surface meth- odology[J]. Journal of Engineering Science and Technology Review,2010,3(1) 116-122.

共引文献52

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部