摘要
针对舰船通信网络流量易受噪声成分影响,导致流量异常检测精度下降问题,提出基于机器学习的舰船通信网络流量异常检测方法。该方法使用基于小波变换的网络流量预处理方法,细化舰船通信网络原始流量数据,由小波阈值将细化后流量数据进行去噪处理后,通过基于机器学习的流量异常检测模型,以前向传播训练、反向传播训练的方式,训练稳定的卷积循环神经网络,将去噪后流量数据样本输入网络中,分类检测通信网络流量数据是否异常。实验结果显示:所提方法有效去除舰船通信网络流量噪声成分后,可提高舰船通信网络流量异常检测精度,无错检情况,且检测范围更全面。
To address the issue of reduced accuracy in detecting traffic anomalies in ship communication networks due to the susceptibility of noise components,a machine learning based method for detecting traffic anomalies in ship communic-ation networks is studied.This method uses a network traffic preprocessing method based on wavelet transform to refine the original traffic data of the ship communication network.After denoising the refined traffic data using wavelet thresholding,a machine learning based traffic anomaly detection model is used to train a stable convolutional recurrent neural network through forward propagation and backward propagation training.The denoised traffic data samples are input into the net-work,classify and detect whether communication network traffic data is abnormal.The experimental results show that the proposed method can effectively remove the noise component of ship communication network traffic,improve the accuracy of ship communication network traffic anomaly detection,have no false detections,and have a more comprehensive detec-tion range.
作者
潘志安
庞国莉
刘庆杰
PAN Zhi-an;PANG Guo-li;LIU Qing-jie(School of Information Engineering,Institute of Disaster Prevention,Sanhe 065201,China)
出处
《舰船科学技术》
北大核心
2023年第21期213-216,共4页
Ship Science and Technology
基金
中央高校基本科研业务费专项资金创新团队资助计划项目(ZY20180125)。
关键词
机器学习
舰船通信
网络流量
异常检测
小波变换
卷积循环神经网络
machine learning
ship communication
network traffic
abnormal detection
wavelet transform
convolutional recurrent neural network