期刊文献+

Solar Power Plant Network Packet-Based Anomaly Detection System for Cybersecurity

下载PDF
导出
摘要 As energy-related problems continue to emerge,the need for stable energy supplies and issues regarding both environmental and safety require urgent consideration.Renewable energy is becoming increasingly important,with solar power accounting for the most significant proportion of renewables.As the scale and importance of solar energy have increased,cyber threats against solar power plants have also increased.So,we need an anomaly detection system that effectively detects cyber threats to solar power plants.However,as mentioned earlier,the existing solar power plant anomaly detection system monitors only operating information such as power generation,making it difficult to detect cyberattacks.To address this issue,in this paper,we propose a network packet-based anomaly detection system for the Programmable Logic Controller(PLC)of the inverter,an essential system of photovoltaic plants,to detect cyber threats.Cyberattacks and vulnerabilities in solar power plants were analyzed to identify cyber threats in solar power plants.The analysis shows that Denial of Service(DoS)and Manin-the-Middle(MitM)attacks are primarily carried out on inverters,aiming to disrupt solar plant operations.To develop an anomaly detection system,we performed preprocessing,such as correlation analysis and normalization for PLC network packets data and trained various machine learning-based classification models on such data.The Random Forest model showed the best performance with an accuracy of 97.36%.The proposed system can detect anomalies based on network packets,identify potential cyber threats that cannot be identified by the anomaly detection system currently in use in solar power plants,and enhance the security of solar plants.
出处 《Computers, Materials & Continua》 SCIE EI 2023年第10期757-779,共23页 计算机、材料和连续体(英文)
基金 supported by the Korea Institute of Energy Technology Evaluation and Planning(KETEP)grant funded by the Korea government(MOTIE)(20224B10100140,50%) the Nuclear Safety Research Program through the Korea Foundation of Nuclear Safety(KoFONS)using the financial resource granted by the Nuclear Safety and Security Commission(NSSC)of the Republic of Korea(No.2106058,40%) the Gachon University Research Fund of 2023(GCU-202110280001,10%)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部