摘要
针对目前“阶跃式”滑坡位移预测模型的不足,提出一种表征“阶跃式”滑坡特征的降雨及库水位作用下的阶跃位移预测模型。该模型首先采用西原蠕变模型拟合滑坡趋势项位移,经过自适应遗传算法下的滑动阶跃识别方法与移动平均算法下的阶跃位移提取方法得到阶跃位移;然后针对阶跃位移,分析选取降雨及库水位影响因子,经过粒子群优化算法(PSO)得到最优相关性下的降雨及库水位综合指标;最后对数据集进行LOF(local outlier factor)算法剔除离群值处理与ADASYN(adaptive synthetic)算法过采样处理,经过蝗虫优化算法优化支持向量机(GOA-SVM)进行二分类后实现对滑坡阶跃位移的分类与预测。以“阶跃式”滑坡——白水河滑坡为例,选取监测点ZG118从2003年6月~2009年8月典型阶跃时间段的数据进行研究。预测结果:数据集总体预测准确率为72.73%,阶跃位移数据集预测准确率为100%,未发生阶跃位移数据集预测准确率为66.67%,预测效果良好。当降雨与库水位作用成为“阶跃式”滑坡阶跃发生的主导因素时,该模型为此类滑坡位移预测提供了新的思路与探索。
To overcome the deficiency of the current “step-type” landslide displacement prediction model,a new model is proposed to characterize the features of “step-type” landslides under the combined effects of rainfall and reservoir water level.The model first uses the Nishihara creep model to fit the trend term displacement of the landslide,and then obtains the step displacement through the sliding step identification method based on the adaptive Genetic Algorithm and the step displacement extraction method based on the Moving Average Algorithm.After the step displacement is extracted,the influencing factors of rainfall and reservoir water level are analyzed and selected,and the optimal comprehensive index of rainfall and reservoir water level under the best correlation is obtained utilizing the Particle Swarm Optimization(PSO) algorithm.Finally,the LOF(Local Outlier Factor) Algorithm is utilized to remove outliers of the data set,and the ADASYN(Adaptive Synthetic) Algorithm is utilized for oversampling.After binary classification by the Grasshopper Optimization Algorithm optimized Support Vector Machine(GOA-SVM),the classification and prediction of landslide step displacement are realized.Taking the Baishuihe landslide as an example of “step-type” landslides,the data of monitoring point ZG118 in the typical step period from June 2003 to August 2009 are selected for research.The prediction results show that the overall prediction accuracy of the data set is 72.73%,the prediction accuracy of the step displacement data set is 100%,and the prediction accuracy of the data set without step displacement is 66.67%,It indicates good prediction performance.When rainfall and reservoir water level become the dominant factors of the occurrence of step-type landslide steps,this model provides new ideas and exploration for the prediction of such landslides.
作者
冯谕
涂鹏飞
曾怀恩
FENG Yu;TU Pengfei;ZENG Huaien(College of Civil Engineering and Architecture,China Three Gorges University,Yichang,Hubei 443002,China;Hubei Key Laboratory of Construction and Management in Hydropower Engineering,China Three Gorges University,Yichang,Hubei 443002,China;National Field Observation and Research Station of Landslides in the Three Gorges Reservoir Area of Yangtze River,Yichang,Hubei 443002,China)
出处
《岩石力学与工程学报》
EI
CAS
CSCD
北大核心
2023年第11期2788-2805,共18页
Chinese Journal of Rock Mechanics and Engineering
基金
国家自然科学基金资助项目(42074005)。
关键词
边坡工程
“阶跃式”滑坡
阶跃位移预测
滑动阶跃识别方法
阶跃位移提取方法
综合指标
支持向量机分类
slope engineering
“step-type"landslide
step displacement prediction
sliding step identification method
step displacement extraction method
comprehensive index
support vector machine classification