摘要
电枢与轨道间摩擦磨损直接影响着枢轨接触状态,进而影响着电磁轨道发射装置的使用寿命和发射效率。为探究温度对电磁轨道发射装置摩擦磨损的影响,分析了发射装置的热载荷来源,建立温度作用下摩擦磨损模型并分析温度对枢轨间磨损的影响。利用有限元法,采用脉冲成形网络对发射装置进行供电,求出接触电阻随时间的变化曲线,考虑电磁场-温度场-应力场等建立三维有限元计算模型,对比分析考虑温度场和不考虑温度场两种状态下电枢磨损量的相关数据。结果表明,随着电枢运动,枢轨接触表面温度逐渐升高,接触区域材料的弹性模量和硬度降低,两种状态下电枢的磨损体积和磨损率变化趋势相同,考虑温度场时电枢最大磨损率为1.15 mm^(3)/ms,是不考虑温度场电枢最大磨损率的1.2倍。
Frictional wear between the armature and the rails directly affects the armature-rails contact condition,thereby affecting the service life and launch efficiency of the electromagnetic rail launcher.In order to explore the influence of temperature on the frictional wear of electromagnetic rail launcher,the source of heat load on the launcher is analyzed,a frictional wear model under the effect of temperature is established and the effect of temperature on the wear between armature and rail is analyzed.Using the finite element method,the pulse forming network is used to power the launcher,the contact resistance variation curve with time is found out,the 3D finite element calculation model is established considering the electromagnetic field-temperature field-stress field,etc.,and the data related to the armature wear amount in the two states considering the temperature field and not considering the temperature field are compared and analyzed.The results show that with the armature movement,the temperature of the contact surface of the armature-rails gradually increases,the elastic modulus and hardness of the material in the contact area decrease,and the change trends of the wear volume and wear rate of the armature in the two states are the same.The maximum wear rate of the armature when considering the temperature field is 1.15 mm^(3)/ms,which is 1.2 times of the maximum wear rate of the armature without considering the temperature field.
作者
郭安新
王学智
杜翔宇
卢晓全
Guo Anxin;Wang Xuezhi;Du Xiangyu;Lu Xiaoquan(Air and Missile Defense College,Air Force Engineering University,Xi’an 710051,China)
出处
《航空兵器》
CSCD
北大核心
2023年第5期72-78,共7页
Aero Weaponry
基金
省部级基金项目(2201079)。
关键词
电磁发射
摩擦磨损
温度场
接触电阻
电接触
electromagnetic launch
frictional wear
temperature field
contact resistance
electrical contact