期刊文献+

广义Rosenau-KdV方程的高精度守恒差分格式

High-Order Conservative Finite Difference Scheme for the Generalized Rosenau-KdV Equation
原文传递
导出
摘要 对广义Rosenau-KdV方程提出一种在时间层和空间层上分别具有二阶和四阶精度的三层线性差分格式,所建格式是离散质量守恒和离散能量守恒的,利用离散能量法证明了差分格式的可解性、收敛性和稳定性.数值实验验证了该格式的精度和守恒性. A three-level linearized high-order conservative finite difference scheme for the generalized Rosenau-KdV equation is proposed.This scheme has second-and fourth-order accuracy in time and space respectively and is conservations of discrete mass and energy.Solvability,convergence and unconditional stability are proved by using the discrete energy method.Numerical experiments show that the proposed scheme has high accuracy and is conservative for discrete mass and energy.
作者 何育宇 王晓峰 邓雅清 HE Yu-yu;WANG Xiao-feng;DENG Ya-qing(School of Mathematics and Statistics,Minnan Normal University,Zhangzhou 363000,China)
出处 《数学的实践与认识》 2023年第11期184-193,共10页 Mathematics in Practice and Theory
基金 福建省中青年教师教育科研项目(JAT190368) 福建省自然科学基金(2020J01796)。
关键词 广义Rosenau-KdV方程 高精度差分格式 守恒性 离散能量法 收敛性 generalized Rosenau-KdV equation high-order difference scheme conservation discrete energy method convergence
  • 相关文献

参考文献2

二级参考文献26

  • 1M.J. Ablowitz and P.A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, in: London Mathematical Society Lecture Notes, Cambridge Univer- sity Press, Cambridge (1991) p. 149.
  • 2P.K. Barreto, C.S.Q. Caldas, P. Gamboa, and J. Limaco, Electron. J. Diff. Equ. 2004 (35) (2004) 1.
  • 3A. Biswas and S. Konar, Appl. Math. Lett. 20 (2007) 1122.
  • 4A. Biswas, Appl. Math. Lett. 22 (2009) 208.
  • 5A. Biswas, Phys. Lett. A 372 (2008) 4601.
  • 6S.K. Chung, Appl. Anal. 69 (1998) 149.
  • 7S.K. Chung and S.N. Ha, Appl. Anal. 54 (1994) 39.
  • 8A. Clarkson, R.J. LeVeque, and R. Saxton, Stud. Appl. Math. 75 (1986) 95.
  • 9A. Esfahani, Phys. Lett. A 374 (2010) 3635.
  • 10R. Hirota and J. Satsuma, J. Phys. Soc. Jpn. 40 (1976) 611.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部