期刊文献+

基于ROS与YOLOv5s的智能车障碍物检测导航系统的设计 被引量:1

Design of Intelligent Vehicle Obstacle Detection and Navigation System based on ROS and YOLOv5s
下载PDF
导出
摘要 针对智能车障碍物检测与自主导航任务中存在的识别准确率差、检出率低,以及自主导航路径规划器稳定性差等问题,设计一种基于ROS实验平台的障碍物检测与自主导航路径规划系统。系统以YOLOv5s作为障碍物检测算法框架,以A^(*)算法与TEB算法融合作为自主导航算法框架,改善了智能车障碍物检测精度低与路径规划不稳定的问题。实验结果表明,搭载该系统的智能车能够完成障碍物检测、自主导航的任务,路径规划平均成功率达到96.67%,障碍物检测准确率在92%以上,综合任务成功率在90%以上,具有障碍物检测准确率高,自主导航路径规划稳定性强的特性。 Aiming at the problems of poor recognition accuracy and low detection rate in obstacle detection and autonomous navigation tasks of intelligent vehicles,as well as poor stability of autonomous navigation path planner,this paper designed an obstacle detection and autonomous navigation path planning system based on ROS experimental platform.This system uses YOLOv5s as the obstacle detection algorithm framework and the fusion of A*algorithm and TEB algorithm as the autonomous navigation algorithm framework,which improves the accuracy of obstacle detection and makes path planning of intelligent vehicles more stable.The results show that the intelligent vehicle equipped with the system can complete the tasks of obstacle detection and autonomous navigation,and the average success rate of path planning is 96.67%,the accuracy rate of obstacle detection is more than 92%,and the success rate of comprehensive tasks is more than 90%.It has the characteristics of high accuracy rate of obstacle detection and strong stability of autonomous navigation path planning.
作者 李文海 李超荣 黄莹飞 张弛 郭伟 LI Wenhai;LI Chaorong;HUANG Yingfei;ZHANG Chi;GUO Wei(Artificial Intelligence Innovation School,Ma'anshan University,Ma'anshan 243000,China)
出处 《成都信息工程大学学报》 2023年第6期661-667,共7页 Journal of Chengdu University of Information Technology
基金 安徽省大学生创新创业训练计划资助项目(202213614003)。
关键词 ROS YOLOv5s 障碍物检测 路径规划 自主导航 智能车 ROS YOLOv5s obstacle detection path planning autonomous navigation smart car
  • 相关文献

参考文献8

二级参考文献45

  • 1葛广英.基于SVM的车型检测和识别算法[J].计算机工程,2007,33(6):6-8. 被引量:15
  • 2Lee, J. , Kao, H. A. , and Yang, S. , Service Innovation and Smart Analytics for Industry 4. 0 and Big Data Environment [ J ]. Procedia Cirp, vol. 16, 2014, pp. 3-8.
  • 3Castellanos, J. A. and Tardos, J. D. , Mobile Robot Localization and Map Building: A Muhisensor Fusion Approach: Springer Science & Business Media, 2012.
  • 4Salas- Moreno, R. F. , Newcombe, R. A. , Strasdat, H. , Kelly, P. H. J. , and Davison, A. J. , "Slam + + : Simultaneous Localisation and Map- ping at the Level of Objects," in IEEE Conference on Computer Vision and Pat- tern Recognition, 2013, pp. 1352 - 1359.
  • 5Tzafestas, S. G., Introduction to Mobile Robot Control: Elsevier, 2013.
  • 6Yang, G., Li, Y., Lim, T. M., and Lira, C. W., " Decoupled Powered Caster Wheel for Omnidirectional Mobile Platforms," in Industrial E- lectronics and Applications (ICIEA), 2014 IEEE 9th Conference on, 2014, pp. 954 -959.
  • 7Yin, J. , Yang, G. , Zhao, F. , and Qiu, H. , " Motion Planning Im- plemented in Ros for Omni - Directional Wheeled Mobile Robot," in Informa- tion and Automation, 2015 IEEE International Conference on, 2015, pp. 2695 - 2700.
  • 8Koubaa, A. , Robot Operating System (Ros) : The Complete Refer- ence vol. 1 : Springer, 2016.
  • 9Machado Santos, J. , Portugal, D. , and Rocha, R. P. , "An Evalua- tion of 2d Slam Techniques Available in Robot Operating System," in Safety, Security, and Rescue Robotics (SSRR), 2013 IEEE International Symposium on, 2013, pp. 1 -6.
  • 10Grisetti, G. , Stachniss, C. , and Burgard, W. , Improved Tech- niques for Grid Mapping with Rao - Blackwellized Particle Filters [ J ]. Robot- ics, IEEE Transactions on, vol. 23, No, 1, 2007, pp. 34 -46.

共引文献80

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部