期刊文献+

基于时序注意力机制的超短期风电功率概率预测

Probability Prediction of Ultra-short-term Wind Power Based on Temporal Pattern Attention
下载PDF
导出
摘要 提高预测精度是风电概率预测研究的关键问题,融合多源数值天气预报数据降低预测误差,采用时序注意力机制对输入信息进行自适应选择,采用时序卷积网络提取多时间尺度的概率特征,并使用混合Beta分布构建预测概率信息。算例结果表明通过时序注意力机制融合多源气象信息能有效提高模型训练的收敛性,其预测结果具有更高的精度。 Improving the prediction accuracy is a key problem for wind power probability prediction research.The multi-source numerical weather prediction were integrated to reduce the prediction error,the temporal pattern attention was used to select the input information adaptively,the temporal convolutional network was used to extract the multi-time scale probability features,and the mixed Beta distribution was used to construct the prediction probability information.The simulation results show that the convergence of model training can be improved effectively by integrating multi-source numerical weather prediction with temporal pattern attention,and the prediction results have higher accuracy.
作者 杨可文 孙英云 YANG Kewen;SUN Yingyun(School of Electrical and Electronics Engineering,North China Electric Power University,Changping District,Beijing 102206,China)
出处 《现代电力》 北大核心 2023年第6期906-913,共8页 Modern Electric Power
基金 国家电网公司总部科技项目(5700-202055486A-0-0-00)。
关键词 概率预测 多源数值天气预报 时序注意力机制 时序卷积网络 probability prediction multi-source numerical weather prediction temporal pattern attention temporal convolutional network
  • 相关文献

参考文献3

二级参考文献54

  • 1艾欣,刘晓.基于可信性理论的含风电场电力系统动态经济调度[J].中国电机工程学报,2011,31(S1):12-18. 被引量:56
  • 2康重庆,夏清,张伯明.电力系统负荷预测研究综述与发展方向的探讨[J].电力系统自动化,2004,28(17):1-11. 被引量:499
  • 3杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究[J].中国电机工程学报,2005,25(11):1-5. 被引量:584
  • 4张显,王锡凡.短期电价预测综述[J].电力系统自动化,2006,30(3):92-101. 被引量:75
  • 5COSTA A,CRESPO A,NAVARRO J. A review on the young history of the wind power short-term prediction[J].Renewable & Sustainable Energy Reviews,2008,(06):1725-1744.
  • 6BARBOUNIS T G,THEOCHARIS J B. Long-term wind speed and power forecasting using local recurrent neural network models[J].IEEE Transactions on Energy Conversion,2006,(01):273-284.doi:10.1109/TEC.2005.847954.
  • 7朱凯;王正林.精通MATLAB神经网络[M]北京:电子工业出版社,2010.
  • 8TSOI A C,BACK A D. Locally recurrent globally feedforward networks, a critical review of architectures[J].IEEE Transactions on Neural Networks,1994,(02):229-239.doi:10.1109/72.279187.
  • 9FAN S,LIAO J R,YOKOYAMA R. Forecasting the wind generation using a two-stage network based on meteorological information[J].IEEE Transactions on Energy Conversion,2009,(02):474-482.
  • 10Tewari S, Geyer C J, Mohan N. A statistical model for wind power forecast error and its application to the estimation of penalties in liberalized markets[J]. IEEE Transactions on Power Systems, 2011,26(4): 2031-2039.

共引文献206

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部