期刊文献+

基于DAE-BP的炉辊轴承外圈裂纹识别

Crack Identification of Furnace Roller Bearing Outer Ring Based on DAE-BP
下载PDF
导出
摘要 为提高对炉辊轴承外圈裂纹识别的准确率,提出了基于DAE-BP的炉辊轴承外圈裂纹识别方法。先通过深度自编码器(DAE)对炉辊轴承振动信号的时域指标进行特征提取并重构,然后融合重构数据与原始时域指标数据,最后利用融合数据训练BP神经网络。实验结果表明,该提出方法对炉辊轴承外圈裂纹识别的准确率达到了99.61%,优于BP诊断方法,有效提高了识别准确率。 In order to improve the accuracy of crack identification on the outer ring of furnace roll bearing,a method based on DAE-BP model was proposed.Firstly,the time-domain characteristics of the vibration signals of the roller bearings were extracted and reconstructed by deep auto-encoder.Then,the reconstructed data is fused with the original time-domain index data.Finally,the BP neural network is trained with fusion data.The experimental results show that the accuracy of the proposed method is up to 99.61%,which is superior to the BP diagnosis method and improves the accuracy effectively.
作者 贾宇巍 牛锐祥 Jia Yuwei;Niu Ruixiang(Shanxi Taigang Stainless Steel Co.,Ltd.,Taiyuan Shanxi 030002,China)
出处 《山西冶金》 CAS 2023年第10期7-9,共3页 Shanxi Metallurgy
关键词 深度自编码器 BP神经网络 炉辊轴承 裂纹识别 deep auto-encoder BP neural network furnace roll bearing crack identification
  • 相关文献

参考文献4

二级参考文献16

共引文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部