摘要
该文针对高校机械类实验室安全风险,设计了智能巡检机器人。首先改进Cartographer算法实现巡检机器人自主建图与导航;然后改进PANet分割算法,实现基于热力图对目标进行分割;最后将长短期记忆网络(LSTM)算法与选择性搜索算法融合识别人体动作,实现实验行为识别与监测。通过横向对比巡检机器人检测、人工定期检测和人工随机检测三种情况下识别各类安全隐患的次数与准确度,证明智能巡检机器人具有较大优势。
This paper designs an intelligent inspection robot for the safety risk of mechanical laboratories in universities.Firstly,the Cartographer algorithm is improved to realize autonomous map building and navigation of the inspection robot;then,the PANet segmentation algorithm is improved to realize segmentation of the target based on the heat map;finally,the long short-term memory network(LSTM)algorithm is fused with the selective search algorithm to recognize the human body movements,and to realize the experimental behavior recognition and monitoring.By comparing the number of times and accuracy of identifying various types of safety hazards in the three cases of inspection robot detection,manual periodic detection and manual random detection horizontally,it proves that the intelligent inspection robot has a greater advantage.
作者
赵地
郭宇泰
杜玉红
谢志明
ZHAO Di;GUO Yutai;DU Yuhong;XIE Zhiming(Engineering Teaching Practice Training Center,Tiangong University,Tianjin 300387,China;College of Engineering,Peking University,Beijing 100871,China;College of Electronics and Information Engineering,Tiangong University,Tianjin 300387,China;College of Innovation,Tiangong University,Tianjin 300387,China)
出处
《实验技术与管理》
CAS
北大核心
2023年第10期242-247,共6页
Experimental Technology and Management
基金
天津市科技计划项目(20YDTPJC00740)
天津市普通高等学校本科教学质量与教学改革研究计划项目(A231005806)。
关键词
实验室安全
巡检机器人
SLAM
测温模型
laboratory safety
inspection robot
SLAM
temperature measurement model