期刊文献+

基于深度学习的乳腺X线摄影肿块检测系统的应用

Application of Deep Learning in Mass Detection Based on Mammography
下载PDF
导出
摘要 目的探讨基于深度学习(DL)的乳腺X线摄影肿块检测系统的临床应用价值。资料与方法回顾性分析2019年4—12月深圳市人民医院1755例接受乳腺X线摄影检查的患者资料。由DL系统和2名初级职称医师采用盲法独立阅片,比较DL系统与2名医师对肿块病灶检出的敏感度,并分析患者年龄、乳腺密度分类、乳腺影像报告和数据系统分类、肿块形态、边缘、密度、大小对于DL系统及2名初级职称医师肿块检出准确度的影响。结果共检出肿块324例(618个肿块),2名医师及DL系统分别检出肿块277例(519个肿块)、268例(482个肿块)、284例(533个肿块)。DL系统及2名医师对于肿块检出的敏感度分别为86.25%、83.98%、77.99%,DL系统对于不同乳腺密度分类的肿块检出差异无统计学意义(χ^(2)=3.04,P>0.05),而2名医师的差异有统计学意义(χ^(2)=9.39、8.96,P<0.05)。DL系统对于不同患者年龄、肿块形态、边缘、密度、大小及乳腺影像报告和数据系统分类的肿块检出差异均有统计学意义(χ^(2)=15.28、41.70、58.67、53.22、28.83、53.75,P<0.05)。结论基于DL的乳腺X线摄影肿块检测系统对肿块病变检测不受乳腺密度的影响,可辅助医师减少因腺体致密造成的肿块漏诊。 Purpose To explore the clinical application value of deep learning(DL)in mass detection based on mammography.Materials and Methods A retrospective analysis was performed on 1755 cases of mammography in Shenzhen People’s Hospital from April to December 2019.Independent imaging reading was evaluated by a DL system and was reviewed by two junior doctors via blinded methods.The results of a senior doctor combined with clinical data,relevant imaging examinations and pathological results were used as the reference standard to compare the sensitivity between DL system and two junior doctors for the detection of mass.The effects of patient age,breast density,breast imaging reporting and data system(BI-RADS),morphology,edge,density,size on the DL system and two junior doctors were analyzed.Results A total of 1755 cases of mammography were enrolled in this study,324 cases were detected(n=618 masses in total).277 cases(519 masses),268 cases(482 masses),and 284 cases(533 masses)were detected by two junior doctors and DL systems,respectively.The sensitivities of the DL system and the two junior doctors for the detection of masses were 86.25%,83.98%,and 77.99%,respectively.The DL system had no significant difference in the detection of breast masses with different density(χ^(2)=3.04,P>0.05),while two junior doctors had significant differences in the detection of breast masses with different density(χ^(2)=9.39,8.96,P<0.05).The DL system and two junior doctors had statistically significant differences in the detection of tumor with different age,morphology,edge,density and size,and BI-RADS(χ^(2)=15.28,41.70,58.67,53.22,28.83,53.75,all P<0.05).Conclusion The DL-based mammography mass detection system is not affected by breast density,and it can assist doctors to reduce the missed diagnosis caused by dense glands.
作者 欧阳汝珊 林小慧 李霖 廖婷婷 马捷 OUYANG Rushan;LIN Xiaohui;LI Lin;LIAO Tingting;MA Jie(Department of Radiology,Shenzhen People’s Hospital(the Second Clinical Medical College,Jinan University/the First Affiliated Hospital,Southern University of Science and Technology),Shenzhen 518020,China)
出处 《中国医学影像学杂志》 CSCD 北大核心 2023年第11期1150-1156,共7页 Chinese Journal of Medical Imaging
基金 深圳市科技研发资金(GJHZ20210705142208024,GJHZ20220913142613025)。
关键词 人工智能 深度学习 乳房X线摄影术 乳腺肿瘤 Artificial intelligence Deep learning Mammography Breast neoplasms
  • 相关文献

参考文献9

二级参考文献72

  • 1邢倩,张晓东,王霄英.基于胸部CT影像组学的肺结节影像学性质判断[J].放射学实践,2020,35(3):340-345. 被引量:21
  • 2陈华.确定任意形状物体最小包围盒的一种方法[J].工程图学学报,2010,31(2):49-53. 被引量:28
  • 3刘万花,郑凯尔,金爱萍,张元宁,何杰,姚青.全数字化乳腺摄影对妇女致密型乳腺病变的诊断价值[J].中华放射学杂志,2006,40(4):350-353. 被引量:21
  • 4杨正汉,冯逢,王霄英.磁共振成像技术指南[M].北京:人民军医出版社,2010:273.
  • 5Maskarinec G, Morimoto Y, Laguana MB, et al. Bioimpedence to assess breast density as a risk factor for breast cancer in adult women and adolescent girls[J]. Asian Pac J Cancer Prey, 2016, 17(1): 65-71.
  • 6Chen X, Moschidis E, Taylor C, et al. Breast cancer risk analysis based on a novel segmentation framework for digital mammograms[J]. Med Image Comput Comput Assist Interv, 2014, 17(Pt 1): 536-543.
  • 7Hellquist BN, Czene K, Hjalm A, et al. Effectiveness of population-based service screening with mammography for women ages 40 to 49 years with a high or low risk of breast cancer: socioeconomic status, parity, and age at birth of first child[J]. Cancer, 2015, 121(2): 251-258. DOI:10.1002/ encr.29011.
  • 8Marshall NW, van Ongeval C, Bosmans H. Performance evaluation of a retrofit digital detector-based mammography system[J]. Phys Med, 2016, 32(2): 312-322. DOI:10.1016/j. ejmp.2016.01.002.
  • 9Monnin P, Bosmans H, Verdun FR, et al. A comprehensive model for quantum noise characterization in digital mammography[J]. Phys Med Biol, 2016, 61(5): 2083-2108. DOI: 10.1088/0031-9155/61/5/2083.
  • 10Heller SL, Hudson S, Wilkinson LS. Breast density across a regional screening population: effects of age, ethnicity and deprivation[J]. Br J Radiol, 2015, 88(1055): 20150242.

共引文献185

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部