期刊文献+

基于HSV空间和梯度下降法的弱光照图像增强算法

Image Enhancement Algorithm for Weak Illumination Based on Hsv Space and Gradient DescentMethod
下载PDF
导出
摘要 针对弱光照图像的处理问题,提出一种基于HSV(色调,饱和度,亮度)空间和梯度下降法的弱光照图像增强算法,将图像由RGB空间转换到HSV空间中,保持H通道和S通道不变,对弱光照图像的V通道进行梯度下降法处理,再由HSV空间转换回RGB空间,完成图像增强。实验结果表明,本算法可有效增强图像的细节,保持图像的整体色彩与原始图像一致,提高图像的视觉效果。 Aiming at the problem of weak illumination image processing,a weak llumination image enhancement algorithm based on HsV space and gradient descent method is proposed.The image is converted from RGB space to HSV space,the H channel and s channel remain unchanged,the V channel of weak illumination image is processed by gradient descent method,and then the HSV space is converted back to RGB space to complete image enhancement.Experimental results show that this algorithm can effectively enhance the details of the image,keep the overall color of the image consistent with the original image,and improve the visual effect of the image.
作者 芦薇薇 黎凯红 胡长晖 Lu Weiwei;Li Kaihong;Hu Zhanghui
出处 《智慧工厂》 2023年第5期76-79,共4页 Smart Factory
基金 国家自然科学基金(61802203) 江苏省自然科学基金(BK20180761) 中国博士后科学基金(2019M651653) 江苏省博士后科研资助计划(2019K124) 南京邮电大学自然科学基金(NY211018) 2021年度南京邮电大学大学生创新训练计划项目校级重点项目(216).
关键词 HSV空间变换 梯度下降法 图像增强 HSV space transformation gradient descent method image enhancemen
  • 相关文献

参考文献2

二级参考文献19

  • 1Lee J H,Chang B H,Kim S D.Comparison of color transformations for image segmentation[J].IEEE Electronics Letters, 1994;30(20):1660~1661.
  • 2Gonzalez R C,Woods R E.Digital Image Processing[M].3rd,AddisonWesley Publishing Company, 1992.
  • 3Chun-Ming Tsai,His-Jian Lee. Binarization of Color Document Images via Luminance and Saturation Color Features[J].IEEE Transactions on Image Processing,2002;11(4):434~451.
  • 4Young Won Lim,Sang Uk Lee. On the Color Image Segmentation Algorithm based on the Thresholding and the Fuzzy c-Mean Techniques[J].Pattern Recognition, 1990;23(9) :935~952.
  • 5Yining Deng,Member IEEE,B S Manjunath. Unsupervised Segmentation of Color-Texture Regions in Images and Video[J].IEEE Transaction PAMI,2001 ;23(8) :800~810.
  • 6C C Chang,L L Wang. A fast multilevel thresholding method basedon low-pass and high-pass filtering[J].Pattem Recognition Lett,1997;18:1469~1478.
  • 7D M Tsai.A fast thresholding selection procedure for multimode and unimodel histograms[J].Pattern Recognition Lett, 1995;16:653~666.
  • 8R Haralick,L Shapiro. Image segmentation techniques[J].Joumals of Computer Vision,Graphics, and Image processing, 1985; 29:100~132.
  • 9Pham T D.Image Segmentation using Probabilistic Fuzzy C-Means Clustering[C].In:Proceedings of International Conference on Image processing, 2001;21(3):722~725.
  • 10M P Windham. Clustering validity for the fuzzy c-means clustering algorithm[J].IEEE Trans Pattern Anal Mach Intell, 1982; PAMI-4:357~363.

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部