期刊文献+

基于属性分组的子空间聚类算法研究

Subspace clustering algorithm based on attribute grouping
下载PDF
导出
摘要 针对分类数据,基于属性分组技术和多目标聚类质量函数,提出一种子空间聚类算法.该算法采用属性分组技术,将高相关属性划分到同属性组中,利用同组属性相关性度量属性权重值,构建属性软子空间;采用基于多目标的聚类质量函数,判断整体聚类效果,通过迭代优化簇集结构,达到最佳的数据划分状态.在人工合成数据集和UCI数据集上,实验验证了该算法的正确性、高效性和可靠性. A subspace clustering algorithm was proposed based on attribute grouping technology and multi-objective clustering quality function for categorical data.The algorithm used attribute grouping technology to divide highly correlated attributes into the same attribute group,and used the correlation of attributes in the same group to measure the attribute weight value to build the attribute soft subspace;The cluster quality function based on multiple objectives was adopted to judge the overall clustering effect,and the cluster structure was optimized iteratively to achieve the best data partition state.The correctness,efficiency,and reliability of the algorithm were verified by experiments on synthetic datasets and UCI datasets.
作者 庞宁 靳黎忠 PANG Ning;JIN Li-zhong(School of Applied Science,Taiyuan University of Science and Technology,Taiyuan 030024,China)
出处 《西南民族大学学报(自然科学版)》 CAS 2023年第6期653-660,共8页 Journal of Southwest Minzu University(Natural Science Edition)
基金 山西省自然科学研究面上项目(20210302123224) 太原科技大学博士启动课题(20202066) 国防科技重点实验室基金项目(JSY6142219202114)。
关键词 属性分组 多目标聚类质量函数 属性子空间 分类数据聚类 attribute grouping multi-objective clustering quality function attribute subspace categorical data clustering
  • 相关文献

参考文献2

二级参考文献106

  • 1曲开社,翟岩慧,梁吉业,李德玉.形式概念分析对粗糙集理论的表示及扩展[J].软件学报,2007,18(9):2174-2182. 被引量:27
  • 2孙吉贵,刘杰,赵连宇.聚类算法研究[J].软件学报,2008(1):48-61. 被引量:1074
  • 3Donoho D L. High-dimensional data analysis: the curses and blessings of dimensionality. American Mathematical Society Math Challenges Lecture, 2000. 1-32.
  • 4Parsons L, Haque E, Liu H. Subspace clustering for high dimensional data: a review. ACM SIGKDD Explorations Newsletter, 2004, 6(1): 90-105.
  • 5Vidal R. Subspace clustering. IEEE Signal Processing Magazine, 2011, 28(2): 52-68.
  • 6Agrawal R, Gehrke J, Gunopulos D, Raghavan P. Automatic subspace clustering of high dimensional data for data mining applications. ACM SIGMOD Record, 1998,27(2): 94-105.
  • 7Lu L, Vidal R. Combined central and subspace clustering for computer vision applications. In: Proceedings of the 23rd International Conference on Machine Learning (ICML). Pittsburgh, USA: ACM, 2006. 593-600.
  • 8Hong W, Wright J, Huang K, Ma Y. Multi-scale hybrid linear models for lossy image representation. IEEE Transactions on Image Processing, 2006, 15(12): 3655-3671.
  • 9Yang A Y, Wright J, Ma Y, Sastry S. Unsupervised segmentation of natural images via lossy data compression. Computer Vision and Image Understanding, 2008, 110(2): 212-225.
  • 10Vidal R, Soatto S, Ma Y, Sastry S. An algebraic geometric approach to the identification of a class of linear hybrid systems. In: Proceedings of the 42nd IEEE Conference on Decision and Control. Maui, HI, USA: IEEE, 2003. 167-172.

共引文献94

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部