期刊文献+

一类非线性薛定谔泊松方程的规范基态解

Normalized Ground State Solutions for a Class of Nonlinear Schrödinger-poisson Equation
原文传递
导出
摘要 本文研究了一类带有参数的非线性薛定谔泊松方程规范基态解的存在性.当参数μ<0时,通过分析Pohozaev流形的结构和泛函纤维映射的几何性质,应用极小化序列方法和Schwarz径向重排技术得到方程有一个正的规范基态解.当参数μ>0时,通过构造辅助泛函并应用形变引理得到了Pohozaev流形附近的一个(PS)序列,然后应用集中紧性原理和单调性方法得到方程规范基态解的存在性. In this paper,we study the existence of normalized ground state solutions for a class of nonlinear Schrödinger-Poisson equation with parameters.When parameterμ<0,by analyzing the structure of Pohozaev manifold and the geometric properties of functional fiber mapping,the method of minimizing sequence and Schwarz radial rearrangement technique are applied to obtain a positive normalized ground state solution of the equation.When the parameterμ>0,a(PS)sequence near the Pohozaev manifold is obtained by constructing the auxiliary functional and applying the deformation lemma.Then,the existence of the normalized ground state solution of the equation is obtained by applying the concentration-compactness principle and the monotone method.
作者 郭淑艳 郭祖记 GUO Shuyan;GUO Zuji(College of Mathematics,Taiyuan University of Technology,Jinzhong 030600,China)
出处 《应用数学学报》 CSCD 北大核心 2023年第6期938-951,共14页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(11601363) 山西省自然科学基金(201601D021011)资助项目。
关键词 薛定谔泊松方程 变分法 规范解 基态解 Schrödinger-Poisson equation variational method normalized solutions ground state solutions
  • 相关文献

参考文献1

二级参考文献25

  • 1Benci V, Fortunato D. An eigenvalue problem for the Schrgdinger-Maxwell equations. Topol. Methods Nonl. Anal., 1998, 11:283 293.
  • 2Az2011ini A, Pomponio A. Ground state solutions for the nonlinear Schr6dinger-Maxwell equations. J. Math. Appl. Anal., 2008, 345:90 108.
  • 3D'Aprile T, Mugnai D. Solitary waves for nonlinear Klein-Gordon-Maxwell and Schr6dinger-Maxwell equations. Proc. Roy. Soc. Edinburgh Sect. A, 2004, 134:1-14.
  • 4D'Aprile T, Mugnai D. Non-existence results for the coupled Klein-Cordon-Maxwell equations. Adv. Nonl. Stud., 2004, 2:307-322.
  • 5Ambrosetti A, Ruiz D. Multiple bound stats for the SchrSdinger-Poisson equation. Comm. Contemp. Math., 2008, 10:1 14.
  • 6Cerami G, Vaira G. Positive solutions for some non-autonomous SchrSdinger-Poisson systems, d. Differential Equations, 2010, 248:521-543.
  • 7Coclite G M. A multiplicity result for the nonlinear SchrSdinger-Maxwell equations. Commun. Appl. Anal., 2003, 7(2-3): 417 423.
  • 8D'Avenia P. Non-radially symmetric solutions of nonlinear SchrSdinger equation coupled with Maxwell equations. Adv. Nonlinear Stud., 2002, 2:177-192.
  • 9D'Aprile T, Wei J. On bound states concentrating on spheres for the Maxwell-Schrodinger equation. SIAM J. Math. Anal., 2005, 37:321 342.
  • 10Figueiredo G M, Santos Junior J R. Existence of a least energy nodal solution for a Schr6dinger- Kirchhoff equation with potential vanishing at infinity. J. Math. Phys., 2015, 56:051506.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部