期刊文献+

基于复数FastICA的双极化干扰对消算法研究

Study on Dual⁃Polarization Interference Cancellation Algorithm Based on Complex FastICA
下载PDF
导出
摘要 为解决卫星通信中极化复用导致的交叉极化干扰问题,提出了一种基于复数快速独立成分分析方法,根据传输信道的对称性对算法作了简化处理,减少了计算量。该算法依据发送端的两个线极化信号的不相关性,在无源信号及混合矩阵的先验信息情况下,构造负熵函数并使其最大化来分离出独立成分,进而实现交叉极化信号对消。仿真实验以正交相移键控调制信号为例,从误差向量幅度、信干噪比、交叉极化隔离度、性能指数这几个指标上进行仿真,仿真结果显示基于复数快速独立成分分析方法对解决交叉极化干扰问题具有良好的性能。 To solve the cross⁃polarization interference problem caused by polarization multiplexing in satellite communications,a fast independent component analysis(FastICA)method based on complex numbers is proposed.The algorithm is simplified according to the symmetry of the transmission channel to reduce the computational effort.The al⁃gorithm constructs and maximizes the negative entropy function to separate the independent components based on the uncorrelationofthetwo⁃linepolarization signals at the transmitter,and then achieves the elimination of the cross⁃polariza⁃tion signal without a priori information of the source signal and the mixing matrix.Taking quadrature phase shift key(QPSK)as an example,the simulation experiments are performed in terms of error vector amplitude(EVM),signal to interference plus noise ratio(SINR),cross⁃polarization discrimination(XPD)and performance index(PI).The simula⁃tion results show that the complex FastICA⁃based method has a good performance in solving the cross⁃polarization inter⁃ference problem.
作者 潘帅帅 武铮 王烁 孙中传 PAN Shuaishuai;WU Zheng;WANG Shuo;SUN Zhongchuan(The 38th Research Institute of China Electronics Technology Group Corporation,Hefei 230088,China;School of Information and Communication Engineering,Harbin Engineering University,Harbin 150001,China)
出处 《雷达科学与技术》 北大核心 2023年第6期701-706,共6页 Radar Science and Technology
关键词 交叉极化干扰 快速独立成分分析 卫星通信 交叉极化隔离度 误差向量幅度 cross⁃polarization interference fast independent component analysis satellite communication cross polarization discrimination error vector magnitude
  • 相关文献

参考文献11

二级参考文献45

  • 1L Wang, H Ding, F Yin. Combining superdirective beamforming and frequency-domain blind source separation for highly reverberant signals [ J]. EURASIP Journal on Audio, Speech, and Music Processing,2010 (1) :1 -t3.
  • 2H shen, M Kleinsteuber. Complex blind source separation via simultaneous strong uncorrelating transform [ C ]. LVA/ICA10 Proceedings of the 9th international conference on Latent variable analysis and signal separation. Belin Heidelberg,2010:287 -294.
  • 3E Bingham, E Hyvarinen. A fast fixed-point algorithm for independent component analysis of complex valued signals[ J]. Intemation Journal of Neural Neural Systems ,2000,10 (1) :1 -8.
  • 4Eriksson J, Koivunen V. Complex random vectors and ICA models : identifiability, uniqueness, and separability [ J ]. IEEE Transactions on Information Theory, 2006,52 ( 3 ) : 1017 - 1029.
  • 5C Jih-cheng, S Douglas. A Robust complex FastICA algorithm using the Huber M-Estimator Cost function [ C ]. ICA2007, UK, London,2007 : 152 - 160.
  • 6S Javidi, P Mandie. Complex blind source extraction form noisy mixtures using second-order statistics [ J ]. IEEE transaction on circuits and systems,2010,57 (7) : 1404 - 1416.
  • 7Novey M. Adali T. Complex ICA by Negentropy Maximization. Neural Networks [ J ]. IEEE Transactions on neural networks,2008,19 (4) :596 - 609.
  • 8A Asad, F Muhammad. A modified m-estimator for the detection of outliers [ J ]. PJSOR,2005,1 ( 1 ) :49 - 64.
  • 9付卫红,杨小牛,刘乃安,曾兴雯.基于步长最优化的EASI盲源分离算法[J].四川大学学报(工程科学版),2008,40(1):118-121. 被引量:9
  • 10林秋华,李镜.基于ICA-R的复值信号抽取方法[J].大连理工大学学报,2008,48(6):919-925. 被引量:2

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部