摘要
深度卷积神经网络具有模型大、计算复杂度高的特点,难以部署到硬件资源有限的现场可编程门阵列(FPGA)中。混合精度卷积神经网络可在模型大小和准确率之间做出权衡,从而为降低模型内存占用提供有效方案。快速傅里叶变换作为一种快速算法,可将传统空间域卷积神经网络变换至频域,从而有效降低模型计算复杂度。提出一个基于FPGA的8 bit和16 bit混合精度频域卷积神经网络加速器设计。该加速器支持8 bit和16 bit频域卷积的动态配置,并可将8 bit频域乘法运算打包以复用DSP,用来提升计算性能。首先设计一个基于DSP的频域计算单元,支持8 bit和16 bit频域卷积运算,通过打包一对8 bit频域乘法以复用DSP,从而提升吞吐率。然后提出一个映射数据流,该数据流支持8 bit和16 bit计算两种形式,通过数据重用方式最大化减少冗余数据处理和数据搬运操作。最后使用ImageNet数据集,基于ResNet-18与VGG16模型对所设计的加速器进行评估。实验结果表明,该加速器的能效比(GOP与能耗的比值)在ResNet-18和VGG16模型上分别达到29.74和56.73,较频域FPGA加速器提升1.2~6.0倍。
Deep Convolutional Neural Network(CNN)have large models and high computational complexity,making their deployment in Programmable Gate Array(FPGA)with limited hardware resources difficult.Hybrid precision CNNs can provide an effective trade-off between model size and accuracy,thus providing an efficient solution for reducing the model's memory footprint.As a fast algorithm,the Fast Fourier Transform(FFT)can convert traditional spatial domain CNNs into the frequency domain,effectively reducing the computational complexity of the model.This study presents an FPGA-based accelerator design for 8 bit and 16 bit hybrid precision frequency domain CNNs that supports the dynamic configuration of 8 bit and 16 bit frequency domain convolutions and can pack 8 bit frequency domain multiplication operations to enable the reuse of DSPs for performance improvement.A DSP-based Frequency-domain Processing Element(FPE)is designed to support 8 bit and 16 bit frequency domain convolution operations.It can pack a couple of 8 bit frequency domain multiplications to reuse DSPs to boost throughput.In addition,a mapping dataflow that supports both 8 bit and 16 bit computation patterns and can maximize the reduction of redundant data processing and data movement through data reuse is proposed.The proposed accelerator is evaluated based on the ResNet-18 and VGG16 models using the ImageNet dataset.The experimental results reveal that the proposed model can achieve 29.74 and 56.73 energy efficiency ratio(ratio of GOP to energy consumption)on the ResNet-18 and VGG16 models,respectively,which is 1.2-6.0 times better than those of frequency domain FPGA accelerators.
作者
陈逸
刘博生
徐永祺
武继刚
CHEN Yi;LIU Bosheng;XU Yongqi;WU Jigang(School of Computer Science and Technology,Guangdong University of Technology,Guangzhou 510006,China)
出处
《计算机工程》
CAS
CSCD
北大核心
2023年第12期1-9,共9页
Computer Engineering
基金
国家自然科学基金(62072118)。
关键词
卷积神经网络
硬件加速器
频域
混合精度
现场可编程门阵列
Convolutional Neural Network(CNN)
hardware accelerator
frequency domain
hybrid precision
Field Programmable Gate Array(FPGA)