期刊文献+

Illumination-Free Clustering Using Improved Slime Mould Algorithm for Acute Lymphoblastic Leukemia Image Segmentation 被引量:1

原文传递
导出
摘要 Partitional clustering techniques such as K-Means(KM),Fuzzy C-Means(FCM),and Rough K-Means(RKM)are very simple and effective techniques for image segmentation.But,because their initial cluster centers are randomly determined,it is often seen that certain clusters converge to local optima.In addition to that,pathology image segmentation is also problematic due to uneven lighting,stain,and camera settings during the microscopic image capturing process.Therefore,this study proposes an Improved Slime Mould Algorithm(ISMA)based on opposition based learning and differential evolution’s mutation strategy to perform illumination-free White Blood Cell(WBC)segmentation.The ISMA helps to overcome the local optima trapping problem of the partitional clustering techniques to some extent.This paper also performs a depth analysis by considering only color components of many well-known color spaces for clustering to find the effect of illumination over color pathology image clustering.Numerical and visual results encourage the utilization of illumination-free or color component-based clustering approaches for image segmentation.ISMA-KM and“ab”color channels of CIELab color space provide best results with above-99%accuracy for only nucleus segmentation.Whereas,for entire WBC segmentation,ISMA-KM and the“CbCr”color component of YCbCr color space provide the best results with an accuracy of above 99%.Furthermore,ISMA-KM and ISMA-RKM have the lowest and highest execution times,respectively.On the other hand,ISMA provides competitive outcomes over CEC2019 benchmark test functions compared to recent well-established and efficient Nature-Inspired Optimization Algorithms(NIOAs).
出处 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第6期2916-2934,共19页 仿生工程学报(英文版)
基金 This work has been partially supported with the grant received in research project under RUSA 2.0 component 8,Govt.of India,New Delhi.
  • 相关文献

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部