期刊文献+

基于相位特征增强的低对比度磨损车道标线提取方法

Extraction Method of Low-contrast Worn Lane Markings Based on Phase Feature Enhancement
下载PDF
导出
摘要 为解决磨损车道标线在光照不均、对比度低情况下检测与识别不完整问题,通过一种基于相位特征增强的低对比度磨损车道标线识别方法,研究了低对比度下磨损车道标线在部分直线不清晰下的相位特征提取弱能量信息,以利于Hough变换提取标线的直线信息。结果表明:提出方法对光照不均匀、低对比度且磨损情况下的车道标线边缘提取效果较好。可见对磨损或有缺失的车道线标线解析其相位特征并结合Hough变换的鲁棒性能解决车道线检测与识别的不完整问题。 To solve the problems of the worn lane markings such as uncomplete detection and identification under uneven illumination and low contrast,according to an identification method for the low-contrast worn lane markings based on the phase feature enhancement,this paper studied extracting weak energy information from phase feature of worn lane markings under low contrast conditions when several lines were not clear,so as to extract line information by Hough transform.The results showed that the proposed method was effective in extracting the lane marking edge under uneven illumination,low contrast,and abrasion,indicating that analyzing the phase feature of worn or missing lane markings and combining the robustness of Hough transform can solve the problems of uncomplete detection and identification of lane markings.
作者 柴辉照 CHAI Huizhao(Shanxi Intelligent Transportation Research Institute Co.,Ltd.,Taiyuan,Shanxi 030032,China)
出处 《山西交通科技》 2023年第5期111-114,119,共5页 Shanxi Science & Technology of Transportation
基金 山西交通科学研究院集团有限公司创新发展计划揭榜项目(21-JKCF-55) 山西省科技厅青年基金项目(202103021223464) 山西省科技厅面上项目(202303021211340)。
关键词 车道标线 低对比度 相位特征 HOUGH变换 lane marking low contrast phase feature Hough transform
  • 相关文献

参考文献10

二级参考文献91

  • 1雷涛,樊养余,王小鹏,王履程.基于形态学结构元素建模的车道线检测算法[J].计算机应用,2009,29(2):440-443. 被引量:21
  • 2郭磊,徐友春,李克强,连小珉.基于单目视觉的实时测距方法研究[J].中国图象图形学报,2006,11(1):74-81. 被引量:98
  • 3何贵青,郝重阳,王毅,田沄,樊养余.基于灰色关联分析和IHS变换的图像融合算法[J].计算机应用研究,2007,24(7):312-314. 被引量:9
  • 4杨进,刘建波.一种改进的IHS图像融合新算法[J].华中科技大学学报(自然科学版),2007,35(8):21-23. 被引量:9
  • 5HARRIS C,STEPHENS M.A Combined Corner and Edge Detector[C]//Proceedings of the 4th Alvey Vision Conference.Plessey Research Roke Manor:The Plessey Company,1988:147-152.
  • 6REISFELD D,WOLFSON H,YESHURUN Y.Context-free Attentional Operators:The Generalized Symmetry Transform[J].International Journal of Computer Vision,1995,14(2):119-130.
  • 7SMITH S,BRADT J M.SUSAN:A New Approach to Low Level Image Processing[J].International Journal of Computer Vision,1997,23(1):45-78.
  • 8LOWE D G.Distinctive Image Features from Scale-invariant Keypoints[J].International Journal of Computer Vision,2004,60(2):91-110.
  • 9BAY H,ESS A,TUYTELAARS T,et al.Speeded-up Robust Features (SURF)[J].Computer Vision and Image Understanding,2008,110(3):346-359.
  • 10ALAHI A,ORTIZ R,VANDERGHEYNST P.FREAK:Fast Retina Keypoint[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Providence,RI:IEEE,2012:510-517.

共引文献90

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部