期刊文献+

基于卷积神经网络的数字调制分类识别 被引量:1

Classification and recognition of digital modulation based on Convolutional neural network
下载PDF
导出
摘要 基于特征提取和模式识别的信号调制方式分类识别技术是非协作通信领域内应用广泛的重点研究对象。提出一种基于深度学习的通信信号数字调制识别算法,采用卷积神经网络找到数据的内在表达,实现逐层化地识别和分类MPSK、MFSK和MQAM中的六种调制信号。仿真实验结果表明,所提出的方法分类识别效果良好,基本达成了数字调制信号自动识别的目的。 The signal modulation classification and recognition technology based on feature extrac⁃tion and pattern recognition is a widely used key research object in the field of non cooperative com⁃munication.A digital modulation recognition algorithm for communication signals based on deep learning is proposed.The Convolutional neural network is used to find the internal expression of data,and the six modulation signals in MPSK,MFSK and MQAM are recognized and classified layer by layer.The simulation experiment results show that the proposed method has good classification and recognition performance,and basically achieves the goal of automatic recognition of digital modulation signals.
作者 袁博文 秦怀涛 易卫明 任苏彤 YUAN Bowen;QIN Huaitao;YI Weiming;REN Sutong(The Fourth Research Institute of Telecommunications Science and Technology,Xi'an 710061;Troops 75775 of PLA,Kunming 650000)
出处 《无线通信技术》 2023年第3期54-57,62,共5页 Wireless Communication Technology
关键词 深度学习 卷积神经网络 调制识别 无线通信 Deep learning Convolutional neural network Modulation recognition wireless communi⁃cation
  • 相关文献

参考文献6

二级参考文献24

共引文献46

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部