摘要
实现多装甲目标跟踪在协同跟踪和打击中发挥着至关重要的作用,而实现多装甲目标跟踪需要解决目标之间遮挡、轨迹交叉以及目标尺度不断变化等问题。因此,提出了一种基于视觉注意力的Gabor在线多装甲目标跟踪方法,实现对地面战场中多装甲目标的跟踪。通过模拟视网膜结构,构造了一种能够增强检测的视觉注意力Gabor分支,并引入时间信息,采用在线学习的目标特性卷积神经网络解决目标遮挡的问题,更重要的是,通过实际拍摄和互联网下载等手段构建了多装甲目标跟踪数据集,并且通过对目前成熟的多目标跟踪方法和本文提出的方法进行对比实验。实验证明了本文提出的方法不仅具有优异的跟踪性能,而且能够满足实际的应用需求。
The realization of multi-armored target tracking plays a vital role in cooperative tracking and strike,and the realization of multi-armored target tracking needs to solve the problems of occlusion,interspersed and constantly changing target scales between targets.Therefore,an online multi-armored target tracking method based on visual-attention Gabor filter is proposed to achieve the tracking of multi-armored targets in the ground battlefield.A visual-attention Gabor filter branch is constructed to enhance detection by simulating the retinal structure.By introducing temporal information,the problem of target occlusion is solved by using an online learned target-specific convolutional neural network.What is more important,a multi-armored target tracking dataset is constructed by means of actual shooting and downloading from the internet,and the current mature multi-target tracking methods are compared with the method proposed in this paper through experiment.The experiments show that the method in this paper not only has excellent tracking performance,but also can meet the actual application requirements.
作者
王慧敏
WANG Huimin(Weapons and Control Department,Army Academy of Armored Forces,Beijing 100o72,China)
出处
《光电子.激光》
CAS
CSCD
北大核心
2023年第11期1178-1186,共9页
Journal of Optoelectronics·Laser
关键词
多装甲目标
在线跟踪
视觉注意力
GABOR
卷积神经网络
multi-amored targets
online tracking
visual-attention
Gabor filter
convolutional neural network