摘要
目的探索双参数MRI(bpMRI)和多参数MRI(mpMRI)检查联合多维度临床指标对前列腺穿刺活检结局的影响,构建相应的预测模型并评估其诊断价值。方法回顾性纳入于2018年1月—2021年12月在南通大学第二附属医院泌尿外科行前列腺穿刺活检术的患者。结合年龄、总PSA(tPSA)、游离PSA(fPSA)、游离PSA/总PSA(f/tPSA)、前列腺特异性抗原密度(PASD)、前列腺体积(PV)、前列腺影像报告及数据系统(PI-RADS)评分等多维度临床指标,分别对行bpMRI和mpMRI检查患者穿刺活检出前列腺癌(PCa)进行单因素分析、多因素logistic回归分析,构建预测模型并绘制ROC曲线评估模型诊断价值。结果①bpMRI检查患者中,PCa组年龄、tPSA、PSAD、PV与PI-RADS评分显著高于非PCa组,f/tPSA则低于非PCa组;多因素logistic回归分析发现,年龄、f/tPSA、PV与PI-RADS评分为预测PCa的独立危险因素;基于bpMRI建立前列腺穿刺活检预测模型1,logitP=-10.52+0.10×年龄-7.21×f/tPSA-0.058×PV+1.70×PI-RADS评分;受试者工作特征(ROC)曲线评估预测模型及独立危险因素对PCa的诊断价值,其中,年龄预测PCa的AUC为0.62(灵敏度为0.34,特异度为0.85),f/tPSA预测PCa的AUC为0.70(灵敏度为0.59,特异度为0.75),PV预测PCa的AUC为0.75(灵敏度为0.88,特异度为0.55),PI-RADS评分预测PCa的AUC为0.81(灵敏度为0.51,特异度为0.94),模型1预测PCa的AUC为0.91(灵敏度为0.84,特异度为0.86)。②mpMRI检查患者中,PCa组年龄、tPSA、PSAD、PV与PI-RADS评分显著高于非PCa组,f/tPSA则低于非PCa组;多因素logistic回归分析发现,年龄、PV与PI-RADS评分为预测PCa的独立危险因素;基于mpMRI建立前列腺穿刺活检预测模型2,logit P=-11.12+0.097×年龄-0.027×PV+1.48×PI-RADS评分;ROC曲线评估预测模型及独立危险因素对PCa的诊断价值,其中,年龄预测PCa的AUC为0.66(灵敏度为0.63,特异度为0.63),PV预测PCa的AUC为0.71(灵敏度为0.65,特异度为0.70),PI-RADS评分预测PCa的AUC为0.81(灵敏度为0.52,特异度为0.94),模型2预测PCa的AUC为0.90(灵敏度为0.77,特异度为0.88)。结论多维度临床指标与bpMRI和mpMRI检查相结合均可提高PCa检出率;其中,年龄、PV与PI-RADS可用于预测bpMRI和mpMRI检查患者前列腺穿刺活检结局,而f/tPSA仅对bpMRI检查患者前列腺穿刺活检结局有预测价值。
Objective To explore the influence of biparametricand multiparametric MRI(bpMRI and mpMRI)combined with multi-dimensional clinical indicators on the outcome of prostate biopsy,and to establish the corresponding predictive models,and evaluate their diagnostic value.Methods The patients who underwent prostate biopsy in the department of urology in the Second Affiliated Hospital of Nantong University from January 2018 to December 2021 were retrospectively included.Combined with the multi-dimensional clinical indicators of age,tPSA,fPSA,f/tPSA,PASD,PV,PI-RADS,single factor analysis and multiple factor logistic regression analysis were performed on the PCa detected by prostate biopsy in patients underging bpMRI and mpMRI,respectively.The predictive models were established and ROC curve was used to evaluate the diagnostic value of the models.Results①In patients underging bpMRI,the age,tPSA,PSAD,PV and PI-RADS scores of PCa group were significantly higher than those of non-PCa group,while f/tPSA was lower than thatof non-PCa group.Multivariate logistic regression analysis showed that age,f/tPSA,PV and PI-RADS scores were independent risk factors for predicting PCa.The prostatebiopsy predictive model 1 was established based on bpMRI,logit P=-10.52+0.10×Age-7.21×f/tPSA-0.058×PV+1.70×PI-RADS.The ROC curve was used to evaluate the diagnostic value of predictive model and independent risk factors for PCa.The AUC of age for predicting PCa was 0.62(sensitivity:0.34,specificity:0.85),the AUC of f/tPSAfor predicting PCa was 0.70(sensitivity:0.59,specificity:0.75),the AUC of PV for predicting PCa was 0.75(sensitivity:0.88,specificity:0.55),and the AUC of PI-RADS scores for predicting PCa was 0.81(sensitivity:0.51,specificity:0.94),the AUC of model 1 for predicting PCa was 0.91(sensitivity:0.84,specificity:0.86).②In patients underging mpMRI,the age,tPSA,PSAD,PV and PI-RADS scores of PCa group were significantly higher than those of non-PCa group,while f/tPSA was lower than thatof non-PCa group;Multivariate logistic regression analysis showed that age,PV and PI-RADS scores were independent risk factors for predicting PCa;The prostate biopsy predictive model 2 was established based on mpMRI,logit P=-11.12+0.097×Age-0.027×PV+1.48×PI-RADS.The ROC curve was used to evaluate the diagnostic value of predictive modeland independent risk factors for PCa.The AUC of age for predicting PCa was 0.66(sensitivity:0.63,specificity:0.63),the AUC of PV for predicting PCa was 0.71(sensitivity:0.65,specificity:0.70),the AUC of PI-RADS scores for predicting PCa was 0.81(sensitivity:0.52,specificity:0.94),and the AUC of model 2 for predicting PCa was 0.90(sensitivity:0.77,specificity:0.88).Conclusion The combination of multi-dimensional clinical indicators with bpMRI and mpMRI could improve the detection rate of PCa.Age,PV and PI-RADS scores could be used for predicting the outcome of prostate biopsy in patients underging bpMRI and mpMRI,while f/tPSA could only be used for predicting the outcome of prostate biopsy in patients underging bpMRI.
作者
姜大业
潘永昇
沈城
陈新凤
江杰
张伟
曹栋梁
潘晓东
郑兵
JIANG Daye;PAN Yongsheng;SHEN Cheng;CHEN Xinfeng;JIANG Jie;ZHANG Wei;CAO Dongliang;PAN Xiaodong;ZHENG Bing(Department of Urology,the Second Affiliated Hospital of Nantong University,Nantong,Jiangsu,226004,China)
出处
《临床泌尿外科杂志》
CAS
2023年第11期849-855,共7页
Journal of Clinical Urology
基金
江苏省老年健康科研课题(No:LKM20222059)
江苏省干部保健科研项目(No:BJ21010)
南通市基础研究、社会民生和技转中心项目(No:MS22022085)。
关键词
前列腺癌
前列腺穿刺
核磁共振成像
诊断价值
预测模型
prostatic cancer
prostate biopsy
magnetic resonance imaging
diagnostic value
predictive model