期刊文献+

二维拓扑反铁磁材料MnBi_(2)Te_(4)中超快磁化率和磁振子动力学的实时观测

Real-time observation of magnetization and magnon dynamics in a twodimensionaltopological antiferromagnet MnBi_(2)Te_(4)
原文传递
导出
摘要 原子级薄的范德华磁性材料不仅为探索二维极限下的基本物理学提供了肥沃的土壤,也为新型超快功能器件创造了巨大的机会.本文系统研究了少层拓扑反铁磁MnBi_(2)Te_(4)晶体在不同层厚、温度和磁场下的超快磁化率和自旋波动力学.作者发现激光诱导的(退)磁化过程可用于精确地跟踪不同磁场区域中的不同磁状态,包括显示出明显的奇偶层数效应.此外,频率为数十千兆赫兹的反铁磁磁振子模式可以被光脉冲激发并在时域中直接被观察到,其频率强烈地依赖于磁场.值得注意的是,磁化率和磁振子动力学不仅可以在时间分辨的磁光克尔效应中观察到,而且在时间分辨的反射率中也可以观察到,这表明磁态和电子结构之间存在很强的相关性.本工作研究了这种新型二维反铁磁体中的超快自旋动力学,为二维反铁磁自旋电子学和磁振子学的潜在应用以及磁态和拓扑量子态的超快调控研究铺平了道路. Atomically thin van der Waals magnetic materials have not only provided a fertile playground to explorebasic physics in the two-dimensional (2D) limit but also created vast opportunities for novel ultrafastfunctional devices. Here we systematically investigate ultrafast magnetization dynamics and spin wavedynamics in few-layer topological antiferromagnetic MnBi_(2)Te_(4) crystals as a function of layer number,temperature, and magnetic field. We find laser-induced (de)magnetization processes can be used to accuratelytrack the distinct magnetic states in different magnetic field regimes, including showing clear odd–even layer number effects. In addition, strongly field-dependent AFM magnon modes with tens of gigahertzfrequencies are optically generated and directly observed in the time domain. Remarkably, we findthat magnetization and magnon dynamics can be observed in not only the time-resolved magnetoopticalKerr effect but also the time resolved reflectivity, indicating strong correlation between the magneticstate and electronic structure. These measurements present the first comprehensive overview ofultrafast spin dynamics in this novel 2D antiferromagnet, paving the way for potential applications in2D antiferromagnetic spintronics and magnonics as well as further studies of ultrafast control of bothmagnetization and topological quantum states.
作者 F.Michael Bartram 李梦 刘良洋 许祗铭 王永超 车梦倩 李昊 吴扬 徐勇 张金松 杨硕 杨鲁懿 F.Michael Bartram;Meng Li;Liangyang Liu;Zhiming Xu;Yongchao Wang;Mengqian Che;Hao Li;Yang Wu;Yong Xu;Jinsong Zhang;Shuo Yang;Luyi Yang(State Key Laboratory of Low Dimensional Quantum Physics,Department of Physics,Tsinghua University,Beijing 100084,China;Department of Physics,University of Toronto,Toronto M5S 1A7,Canada;Beijing Innovation Center for Future Chips,Tsinghua University,Beijing 100084,China;Tsinghua-Foxconn Nanotechnology Research Center,Department of Physics,Tsinghua University,Beijing 100084,China;College of Math and Physics,Beijing University of Chemical Technology,Beijing 100029,China;Frontier Science Center for Quantum Information,Beijing 100084,China;Collaborative Innovation Center of Quantum Matter,Beijing 100084,China;RIKEN Center for Emergent Matter Science(CEMS),Wako,Saitama 351-0198,Japan;Hefei National Laboratory,Hefei 230088,China)
出处 《Science Bulletin》 SCIE EI CAS CSCD 2023年第22期2734-2742,M0005,共10页 科学通报(英文版)
基金 supported by the National Key R&D Program of China(2020YFA0308800 and 2021YFA1400100) the National Natural Science Foundation of China(12074212) supported by the National Natural Science Foundation of China(12174214 and 92065205) the National Key R&D Program of China(2018YFA0306504) the Innovation Program for Quantum Science and Technology(2021ZD0302100) supported by the National Natural Science Foundation of China(12274252) the National Key R&D Program of China(2018YFA0307100) supported by the National Natural Science Foundation of China(21975140 and 51991343) Fundamental Research Funds for the Central Universities(Buctrc202212) supported by funds from the University of Toronto。
  • 相关文献

参考文献1

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部