摘要
以天山东部国有林管理局板房沟分局为例,建立了适用于森林经营单位尺度的多地物类型、多尺度、多源数据的超分辨率模型。文章构建的模型较其他模型在此研究区有更好的稳定性和抗干扰性,且在主观效果对比中,能够更全面地提取低分辨率图像特征,更充分地恢复图像的纹理信息,在一定程度上满足了林业生产的部分需求。
Taking the Branch of State-owned Forest Administration in eastern Tianshan Mountains as an example,a super-resolution model of multi-ground type,multi-scale and multi-source data suitable for forest management unit scale is established.The model constructed in this paper has better stability and anti-interference than other models in this study area,and in the subjective effect comparison,it can extract low-resolution image features more comprehensively,more fully recover the texture information of the image,and meet some of the needs of forestry production to a certain extent.
作者
李翔
唐努尔·叶尔肯
张毓涛
孙雪娇
LI Xiang;DONUR Yerken;ZHANG Yutao;SUN Xuejiao(Institute of Forest Ecology,Xinjiang Academy of Forestry Sciences,Urumqi 830002,China;Xinjiang Tianshan Forest Ecosystem National Positioning Observation and Research Station,Urumqi 830002,China;Natural Forest Protection Center of Xinjiang Uygur Autonomous Region,Urumqi 830002,China)
关键词
林区
超分辨率
深度学习
模型构建
forest area
super-resolution
deep learning
model construction