摘要
采用国产GF-1卫星数据,分析该数据中的光谱、纹理、植被指数、地形等特征,构建对露天采矿用地提取具有一定应用价值的多特征集合,最后对比应用价值较高的BP神经网络和改进的参数寻优LIBSVM模型对露天采矿用地的提取效果。结果表明:1)在2种算法的应用中,可以获取较高精度的特征集合都为B(光谱)+G(纹理)+V(植被)+D(地形);2)结合参数寻优的LIBSVM模型与B+G+V+D特征集对露天采矿用地提取可以获取较高精度,总体精度为91.76%,F1函数为94.55%,Kappa系数为0.8972。基于B+G+V+D的多特征集合,结合参数寻优的LIBSVM模型在露天采矿用地提取中具有较高的应用价值,为自然资源管理部门提供了一种较好的管理方法。
This paper uses the domestic GF-1 satellite data to analyze the spectrum,texture,vegetation index,terrain and other features on the data,and constructs a multi-feature set with certain application value for the extraction of open-pit mining land,and finally compares the BP neural network with higher application value and the extraction effect of the improved parameter optimization LIBSVM model for the open-pit mining land.The results show that:(1)In the application of the two algorithms,the feature sets that can be obtained with higher precision are B(spectrum)+G(texture)+V(vegetation)+D(terrain);(2)Combined with parameter optimization LIBSVM model and B+G+V+D feature set,high precision can be obtained for open-pit mining land extraction,with the overall accuracy of 91.76%,F1 function of 94.55%,and kappa coefficient of 0.8972.Based on the multi-feature set of B+G+V+D,the LIBSVM model combined with parameter optimization has good application value in the extraction of open-pit mining land,and provides a better management method for natural resource management departments.
作者
李润芝
LI Runzhi(Surveying and Mapping Product Quality Testing Center of Huizhou Daya Bay Economic and Technological Development Zone,Huizhou 516000,China)
出处
《测绘与空间地理信息》
2023年第12期113-116,共4页
Geomatics & Spatial Information Technology