期刊文献+

基于微气泡强化的浆态床反应器流体力学特性 被引量:1

Fluid mechanics characteristics of microbubble enhanced slurry bed reactor
下载PDF
导出
摘要 采用电导探针和Pavlov管研究了微气泡对浆态床反应器内气含率和轴向液速的影响规律。实验结果表明,随着微气泡进气比(Qg-micro/Qg)的增加,平均气含率先增加后减小,最佳Qg-micro/Qg为0.28,反应器底部中心局部气含率显著增加,壁面局部气含率变化较小;随着Qg-micro/Qg增加,反应器底部中心轴向液速逐渐变大,而壁面附近液速方向始终向下;随着反应器轴向高度的增加,气体分布器对局部气含率和轴向液速的影响逐渐减弱,局部气含率径向极差变小,轴向液速的径向分布曲线更加平坦。 The effects of microbubbles on gas holdup and axial liquid velocity within the slurry bed reactor were investigated using conductivity probes and Pavlov tubes.The experimental results show that as the microbubble intake ratio(Qg-micro/Qg)increases,the average gas holdup initially increases and then decreases,with an optimal Qg-micro/Qg of 0.28,and the local gas holdup in the center of reactor bottom increases significantly,while that near the wall changes less.Besides,the axial liquid velocity in the center of reactor bottom increases with the Qg-micro/Qg,while the direction of liquid velocity near the wall is remained downward.However,the influence of the gas distributor on gas holdup and axial liquid velocity gradually weakens with an increase of the axial height of the reactor,resulting in a smaller radial difference in the gas holdup and a flatter radial distribution curve of axial liquid velocity.
作者 马树刚 卢竟蔓 苏武 黄正梁 谭青峰 帅云 MA Shugang;LU Jingman;SU Wu;HUANG Zhengliang;TAN Qingfeng;SHUAI Yun(PetroChina Petrochemical Research Institute,Beijing 102206,China;Zhejiang Provincial Key Laboratory ofAdvanced Chemical Engineering Manufacture Technology,College of Chemical and Biological Engineering,Zhejiang University,Hangzhou 310027,China)
出处 《石油化工》 CAS CSCD 北大核心 2023年第11期1544-1550,共7页 Petrochemical Technology
基金 国家自然科学基金项目(22078285,22208289)。
关键词 浆态床 微气泡 气含率 轴向液速 气体分布器 slurry bed microbubble gas holdup axial liquid velocity gas distributor
  • 相关文献

参考文献3

二级参考文献51

  • 1李雪静,任文坡.国内外渣油悬浮床加氢裂化技术进展[J].石化技术,2012,19(1):65-70. 被引量:13
  • 2黄雄斌,包雨云,施力田,王英琛.应用电导探针测定固-液两相流的局部速度[J].高校化学工程学报,1995,9(2):187-190. 被引量:9
  • 3Okamoto Kyoichi, Hotta Kenji, Toyama Takeshi, et al. Experiments on purification of ocean sludge by activating microorganisms[C]// Proceedings of Twenty-first (2011 ) International Offshore and Polar Engineering Conference, Maul, Hawaii, USA, June 19-24, 2011.
  • 4Tsai Jen Chieh, Kumar Mathava, Chen Shenyi, et al. Nano-bubble flotation technology with coagulation process for the cost-effective treatment of chemical mechanical polishing wastewater[J]. Separation andPurification Technology, 2007, 58: 61-67.
  • 5Rapoport Natalya, Gao Zhonggao, Kennedy Anne. Multifunctional nanoparticles for combining ultrasonic tumor imaging and targeted chemotherapy[J]. J. Natl. Cancer lnst., 2007, 99 ( 14): 1095-1106.
  • 6Xing Zhanwen, Wang Jinrui, Ke Hengte, et al. The fabrication of novel nanobubble ultrasound contrast agent for potential tumor imaging[J].Nanotechnology, 2010, 21 (14): 145607.
  • 7Watanabe Y, Horie S, Funaki Y, et al. Delivery of Na/I symporter gene into skeletal muscle using nanobubbles and ultrasound: Visualization of gene expression PET[J]. J. Nucl. Med., 2010, 51 (6): 951-958.
  • 8Takahashi Masayoshi, Kawamura Taro, Yamamoto Yoshitaka, et al. Effect of shrinking microbubble on gas hydrate formation[J]. The American ChemicalSociety, 2003, 107 (10): 2171-2173.
  • 9Takahashi Masayoshi. The (potential of microbubbles in aqueous solutions--Electrical properties of the gas-water interface[J]. The Journal of Physical Chemistry, 2005, 109 (46): 21858-21864.
  • 10Takahashi Masayoshi, Chiba Kaneo, Pan Li. Free-radical generation from collapsing microbubbles in the absence of a dynamic stimulus[J]. J. Phys. Chem. B, 2007, 111 (6):1343-1347.

共引文献53

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部